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Fundamentally, emergent communication 1s a representation learning
problem. Typically, 1t 1s phrased as a Lewis game, in which participants
signal using observational information. In multi-agent reinforcement
learning (MARL) with communication, coordination information (ordinal)

* QOur compositional, contrastive method 1s able to find converge to 100%
task success, leading to better solutions with less data.
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span the observations and intents. Additionally, messages are naturally Running: 0.238 -———— ae-comm : 0.876 + 0.041 * ae-comm uses an autoencoder to ground communication in
compressed to the least number of bits. We test our novel methodology on Triaging: 0.649 0.70 - | 0871 _0 028 input observations.
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referential and ordinal multi-agent tasks. 0.65 * VQ-VIB uses a variational autoencoder to ground discrete
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Steps 1e5 objective to ensure low entropy communication.
* Mutual information measures the dependence between variables 1n a
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