Modular Value Function Factorization in Multi-Agent Reinforcement Learning

Oliver Järnefelt 1
Carlo D’Eramo 1,2

1Technische Universität Darmstadt 2Hessian.AI

TL;DR
Leverage the modularity of the embedded coordination graph by formulating the total utility as a sum of subteam mixings

- Each constituent is trained via a local mixing function, which needs to only consider a subset of agent utilities to form the total value estimate.
- We suggest finding the closest disjoint approximation of non-divisible graphs via graph partitioning
- We evaluate partitioning graphs with a novel value-based partitioning distance measure

Value factorization

Decompose joint value function

- Value decomposition network [1]:
 $$Q(s, u) = \sum_{k=1}^{K} Q_k(s, u)$$ (1)
- (Weighted) QMIX, QPLEX [2,3,4]
- QTRAN [5]:
 $$Q(s, u) = \sum_{k \in K} Q_k(s, u_k) + V(s)$$ (2)

where

$$V(s) = \max Q(s, u) - \sum_{k=1}^{K} Q_k(s, u_k)$$

We consider problems where:
- coordination graph structure is available
- mutually independent subpopulations of agents (modular)

- Known Exact Structure Leverageing (KESL)
 - Leverage the notion of Disconnected Hyper-Coordination Graph
 - \mathcal{V}: set of agents
 - E^h: set of hyper-edges
 - $Q_i = (V_i, E^h)$
 - Disconnected property: $V_i \cap V_j = \emptyset \iff i = j$
 - A disconnected hyper-coordination graph is:
 $${\mathcal{H}} = \bigcup_{i=1}^{n} C_i$$ (3)
 - Mixing agents in each component using QTRAN

- Known Approximate Structure Leverageing (KASL)
 - For non-divisible coordination graphs, we find the closest partitioning P and then use KESL
 - Novel distance measure between graphs
 $$d(\mathcal{H}, P) = \min_{P \in \mathcal{P}} \| Q - Q_H \|_{\infty}$$ (5)
 - i.e., the minimum estimation error achievable by any joint utility function in the family of factorizations determined by P
 - Distance measure based on utility functions!
 - Upper bound: Given a hypergraph $\mathcal{H} = (V, E)$, let $E^h \subseteq E$ denote the set of cut hyperedges by partitioning P that introduces new hyperedges $E_h^c = \{ e^c | \exists e' \in E, e \neq e' \}$. Further, given a hyperedge pair (e, e') with $e \in E_h$ and $e' \in E$, we define $E_h^c = \{ e' \in E | e' \not\subset e \} = \{ e' \in V | \exists e^c \in E_h^c : e \not\subset e^c \}$ and $\mathcal{V}_e = \{ v | v \in E \}$ and $\mathcal{V}_e^c = \{ v | v \notin E \}$.
 - Then, the minimum estimation error achievable by any utility function within the family of factorizations determined by P is upper bounded by (proof omitted for space limitations):
 $$\min_{\mathcal{P} \in \mathcal{P}} \| Q_H - Q_H \|_{\infty} \leq \sum_{e' \in E} \sum_{e \in E_h^c} \| \mu_e - \mu_e \|_{\infty}$$

Empirical results

Deadliest catch

Generalized firefighting

$$r = \min(\text{Agentens, } 1) + \max(\text{Agentens} - 1, 0)/2$$

References