Modular Value Function Factorization in
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Modular value function factorization Coordination graphs

We consider problems where:

= coordination graph structure is available
= mutually independent subpopulations of agents (modular)

Leverage the modularity of the em-
bedded coordination graph by for-
mulating the total utility as a sum of

subteam mixings Known Exact Structure Leveraging (KESL)

= Leverage the notion of Disconnected Hyper-Coordination Graph
= ): set of agents
= £ set of hyper-edges

-ach constituent is trained via a
ocal mixing function, which

needs to only consider a subset = G = (V) &)
of agent utilities to form the total = Disconnectivity property: ViNV; £ 0 <= i=j
value estimate. = Adisconnected hyper-coordination graph is: Figure 1. Coordination graph [6]
We suggest finding the closest H=UC (3)
disjoint approximation of = Mixing agents in each component using QTRAN _
non-divisible graphs via graph = The total utility is: Qls, 1) = Quls, w1, up) + @ols, s, us)
partitioning K + Qg(S, ur, u3) T Q4(8, us, U4)
. . . — . é
We evaluate partitioning graphs Qs 1) ;Qk(s’u) K () (6)

with a novel value-based
partitioning distance measure

where [C;. assigns each agent to its own component
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Upper bound: Given a hypergraph H = (V, &), let £. C &
denote the set of cut hyperedges by partitioning P that
introduces new hyperedges €, = {e' | de € &.s.t. € C e}.
Further, given a hyperedge pair (e, e’), withe € £, and ¢’ € &,
we denote V, = {v |v €€, ¢ C e} and

V_o={v|veed e\e}and g = \Z,{_l_\Zu’_EZ/l_ ¢e(-,ul). Then,
the minimum estimation error achievable by any utility
function within the family of factorizations determined by P is
upper bounded by (proof omitted for space limitations):

min ||Q5 — Qrallo <Y Y 11ge — Getlloo

preprint arXiv:1706.05296 (2017).

. Rashid, Tabish, et al. "Qmix: Monotonic

value function factorisation for deep
multi-agent reinforcement learning”. ICML

(2018).

. Rashid, Tabish, et al. "Weighted gmix:

Expanding monotonic value function
factorisation for deep multi-agent
reinforcement learning”. NeurlPS (2020).

. Wang, Jianhao, et al. "Qplex: Duplex

dueling multi-agent g-learning”. arXiv
preprint arXiv:2008.01062 (2020).

. Son, Kyunghwan, et al. "Qtran: Learning to

factorize with transformation for

cooperative multi-agent reinforcement
learning”. ICML (2019).

6. Guestrin, Carlos, Daphne Koller, and
Ronald Parr. "Multiagent planning with
factored MDPs”. NeurlPS (2001).

H'eP!
ecl. ek, e'Ce

Empirical results

Deadliest catch Generalized firefighting
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r. = min{#agents, 1} + max{#agents — 1,0}/2 r= {—2 If #agents < 2

—5 If not all boats attack the big fish

5 If all boats attack the big fish
T =
1 Otherwise

Name || # agents | Fleet sizes | i for each fleet |
Small-Uniform (5Uni) 6 13.3} [0,1]
Big-Uniform4 (BUni4) 12 {444} [0,1,2]

Big Diverse6 (BDiv6) | 12 | {336} |  [0.1.2]
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Evaluation rewards, BUnid Evaluation rewards, BDiv6 0 Otherwise
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