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TL;DR

Leverage the modularity of the em-

bedded coordination graph by for-

mulating the total utility as a sum of

subteam mixings

I Each constituent is trained via a

local mixing function, which

needs to only consider a subset

of agent utilities to form the total

value estimate.

I We suggest finding the closest

disjoint approximation of

non-divisible graphs via graph

partitioning

I We evaluate partitioning graphs

with a novel value-based

partitioning distance measure

Value factorization

Decompose joint value function

I Value decomposition network [1]:

Q(s, u) =
K∑

k=1
Qk(s, u) (1)

I (Weighted) QMIX, QPLEX [2,3,4]

I QTRAN [5]:

Q(s, u) =
∑
k∈K

Q(s, uk) + V (s) (2)

where

V (s) = max Q(s, u) − ∑K
k=1 Qk(s, uk)

Modular value function factorization

I We consider problems where:
coordination graph structure is available

mutually independent subpopulations of agents (modular)

I Known Exact Structure Leveraging (KESL)
Leverage the notion of Disconnected Hyper-Coordination Graph

V : set of agents
E : set of hyper-edges
Ci = 〈Vi, Ei〉
Disconnectivity property: Vi ∩ Vj 6= ∅ ⇐⇒ i = j
A disconnected hyper-coordination graph is:

H = ∪C
i=1Ci (3)

Mixing agents in each component using QTRAN

The total utility is:

Q(s, u) =
K∑

k=1
Qk(s, u) · Kk (4)

where Kk assigns each agent to its own component

I Known Approximate Structure Leveraging (KASL)
For non-divisible coordination graphs, we find the closest

partitioning P and then we use KESL
Novel distance measure between graphs

d(H, P) = min
H′∈P

‖Q∗ − Q∗
H′‖∞ (5)

i.e., the minimum estimation error achievable by any joint

utility function in the family of factorizations determined by P
Distance measure based on utility functions!

Upper bound: Given a hypergraph H = 〈V , E〉, let Ec ⊆ E
denote the set of cut hyperedges by partitioning P that
introduces new hyperedges En = {e′ | ∃ e ∈ Ec s.t. e

′ ⊂ e}.
Further, given a hyperedge pair 〈e, e′〉, with e ∈ En and e′ ∈ Ec,

we denote V+ = {v | v ∈ e′, e′ ⊂ e} and
V− = {v | v ∈ e′, e \ e′} and q̃e,+ = 1

|U−|
∑

u′
−∈U−

qe(·, u′
−). Then,

the minimum estimation error achievable by any utility

function within the family of factorizations determined by P is
upper bounded by (proof omitted for space limitations):

min
H′∈P ′

||Q∗
jt − Q∗

jt,H′||∞ ≤
∑
e∈Ec

∑
e′∈En,e′⊂e

||qe − q̃e,+||∞.

Coordination graphs

Figure 1. Coordination graph [6]

Q(s, u) = Q1(s, u1, u2) + Q2(s, u2, u4)
+ Q3(s, u1, u3) + Q4(s, u3, u4)

(6)
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