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Joint multi-agent trajectory optimization is conventionally considered intractable due to the 

exponential scaling of the number of collision avoidance constraints and linear increase in the 

number of variables by increasing the number of agents. On the other hand, the joint formulation 

allows access to more feasible space leading to better coordination maneuvers. Here, we try to 

improve the scalability of joint multi-agent trajectory optimization. Our core idea involves breaking 

the joint problem into several decoupled smaller Quadratic Programming (QP) problems and 

parallelizing them over GPUs. We compare the performance of our optimizer with the state of the 

arts in terms of trajectory quality including smoothness cost and arc length and computation time. 

ABSTRACT  

• Breaking the joint multi-agent trajectory optimization into several smaller distributed 

decoupled problems. 

• Reducing the decoupled sub-problems in the form of special QP problems.  

• Showing that all the QPs associated with the decoupled sub-problems have the same matrices, 

and only the vector part of the QP are changing across the problem instances.  

• Demonstrating that the solution process of such special QPs can be easily parallelized over 

GPUs. 

• Comparison with the state-of-the-art [1,2] in terms of computation time and trajectory qualities 

OBJECTIVE 

 

 

 

 

Implementation Details:   

• A desktop computer with 32 GB RAM and RTX 2080 NVIDIA GPU. 

• Using JAX [4] in python to accelerate linear computations 

Benchmarks: 

• The agents' start and goal positions are sampled along the circumference of a circle. 

• The agents are initially located on a grid and are tasked to converge to a line formation.  

             Qualitative Results                                   Optimizer Convergence    
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Fig.2: Trajectory snapshots for (A-C) 32 agents, with radius 0.3m and 20 

obstacles of radius 0.4m, (D-F) 32 agents, with radius 0.3m and 8 ran-

domly placed obstacles of radius 0.4m, (G-I) 36 agents with radius 0.1m 

arranged in a grid configuration are required to move to a line for-

mation. Also, there are 4 static obstacles with radius 0.15m. 

BENCHMARKS 

We conceptually validate the convergence of 

our optimizer by plotting the constraints resid-

ual over iterations Fig. (3). If these residuals 

have a decreasing trend over iterations and 

converge to zero, trajectories are collision-

free. Since this trend is satisfied in Fig. (3), the 

trajectories returned by our optimizer ensure 

the agents do not collide with each other and 

obstacles.  

 

By leveraging mathematical reformulations and GPU-based parallelization, our optimizer computes trajectories 

for tens of agents in cluttered environments within a fraction of a second. In comparison with state-of-the-art 

baseline approaches, we achieve improvement in terms of not only the computation time, but also trajectory 

quality. 

CONCLUSION 
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 Where    is Lagrange multiplier,    and are based on equality constraints and is generated by 

vertically stacking polynomial functions. 

 

Using Alternating Minimization (AM) method, our optimization problem (5a)-(5d) can be solved through 

Algorithm 1. 

Overview 

we present a special class of QPs and how their solution can be accelerated over GPUs. consider 

 

where  is the optimization variable required to be solved for  nr different QP problems. 

 

 

where      are the dual optimization variables. Since the matrix in (2) does not depend on the batch 

index i, the optimization variables for all batches can be computed in parallel through (3). 

Distributed Optimization Problem 

Considering collision avoidance constraints in the polar form (see  [2,3]), the ith decoupled sub-

problem shown in Fig.  1 can be formulated in the following manner. 

 

 

 

 

 

 

where,  represents the position of the ith agent at timestamp t. The cost function(4a) 

minimizes the acceleration along each axis at each time instant for all the agents. Initial and  final 

boundary conditions are shown in (4b) and (4c). The unknown parameters,       ,  

in collision avoidance constraints (4d) and (4e) need to be computed. 

Now, we parametrize x, y, and z, using time-dependent polynomial basis functions, and stack their 

coefficients as Then, we define     and    and, and utilize 

augmented Lagrangian method to rewrite the optimization problem as:      

   

METHOD 

Fig.1: All  agents communicate their current trajectories. In the next itera-

tion, each agent uses this prior communicated trajectories to form the 

collision avoidance constraints at the next planning cycle. This in turn al-

lows each agent to act independently. In other words, the communica-

tion strategy takes a joint trajectory optimization problem (first block on 

the left) and converts it into  nr decoupled problems. Our approach is  

GPU accelerated parallelized solution of the decoupled sub-problems 

Table 1: Comparison of our optimizer with  [1,2] in terms of computation 

time, arc-length and smoothness} 

Comparisons 

 

Fig. 3: Validating optimizer convergence em-

pirically 
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