
GPU Acceleration of Joint Multi-Agent Trajectory

Optimization
Dipanwita Guhathakurta1, Fatemeh Rastgar2, M Aditya Sharma1, Madhava Krishna1 and Arun Kumar Singh2

1 International Institute of Information Technology, Gachibowli, Hyderabad, India
2 Institute of Science and Technology, University of Tartu, Tartu, Estonia

Joint multi-agent trajectory optimization is conventionally considered intractable due to the

exponential scaling of the number of collision avoidance constraints and linear increase in the

number of variables by increasing the number of agents. On the other hand, the joint formulation

allows access to more feasible space leading to better coordination maneuvers. Here, we try to

improve the scalability of joint multi-agent trajectory optimization. Our core idea involves breaking

the joint problem into several decoupled smaller Quadratic Programming (QP) problems and

parallelizing them over GPUs. We compare the performance of our optimizer with the state of the

arts in terms of trajectory quality including smoothness cost and arc length and computation time.

ABSTRACT

• Breaking the joint multi-agent trajectory optimization into several smaller distributed

decoupled problems.

• Reducing the decoupled sub-problems in the form of special QP problems.

• Showing that all the QPs associated with the decoupled sub-problems have the same matrices,

and only the vector part of the QP are changing across the problem instances.

• Demonstrating that the solution process of such special QPs can be easily parallelized over

GPUs.

• Comparison with the state-of-the-art [1,2] in terms of computation time and trajectory qualities

OBJECTIVE

Implementation Details:

• A desktop computer with 32 GB RAM and RTX 2080 NVIDIA GPU.

• Using JAX [4] in python to accelerate linear computations

Benchmarks:

• The agents' start and goal positions are sampled along the circumference of a circle.

• The agents are initially located on a grid and are tasked to converge to a line formation.

 Qualitative Results Optimizer Convergence

 Validation

Fig.2: Trajectory snapshots for (A-C) 32 agents, with radius 0.3m and 20

obstacles of radius 0.4m, (D-F) 32 agents, with radius 0.3m and 8 ran-

domly placed obstacles of radius 0.4m, (G-I) 36 agents with radius 0.1m

arranged in a grid configuration are required to move to a line for-

mation. Also, there are 4 static obstacles with radius 0.15m.

BENCHMARKS

We conceptually validate the convergence of

our optimizer by plotting the constraints resid-

ual over iterations Fig. (3). If these residuals

have a decreasing trend over iterations and

converge to zero, trajectories are collision-

free. Since this trend is satisfied in Fig. (3), the

trajectories returned by our optimizer ensure

the agents do not collide with each other and

obstacles.

By leveraging mathematical reformulations and GPU-based parallelization, our optimizer computes trajectories

for tens of agents in cluttered environments within a fraction of a second. In comparison with state-of-the-art

baseline approaches, we achieve improvement in terms of not only the computation time, but also trajectory

quality.

CONCLUSION

[1] J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient multi-agent trajectory planning with feasibility guarantee using relative Bernstein

polynomial,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 434–440

[2] F. Rastgar, H. Masnavi, J. Shrestha, K. Kruusamae, A. Aabloo, and A. K. Singh, “Gpu accelerated convex approximations for fast

multi- agent trajectory optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3303–3310, 2021

[3] F. Rastgar, A. K. Singh, H. Masnavi, K. Kruusamae, and A. Aabloo, “A novel trajectory optimization for affine systems: Beyond

convex- concave procedure,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.

1308–1315

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-

Milne, et al., “Jax: composable transformations of python+ num programs,” Version 0.2, vol. 5, pp. 14–24, 2018.

REFERENCES

 Where is Lagrange multiplier, and are based on equality constraints and is generated by

vertically stacking polynomial functions.

Using Alternating Minimization (AM) method, our optimization problem (5a)-(5d) can be solved through

Algorithm 1.

Overview

we present a special class of QPs and how their solution can be accelerated over GPUs. consider

where is the optimization variable required to be solved for nr different QP problems.

where are the dual optimization variables. Since the matrix in (2) does not depend on the batch

index i, the optimization variables for all batches can be computed in parallel through (3).

Distributed Optimization Problem

Considering collision avoidance constraints in the polar form (see [2,3]), the ith decoupled sub-

problem shown in Fig. 1 can be formulated in the following manner.

where, represents the position of the ith agent at timestamp t. The cost function(4a)

minimizes the acceleration along each axis at each time instant for all the agents. Initial and final

boundary conditions are shown in (4b) and (4c). The unknown parameters, ,

in collision avoidance constraints (4d) and (4e) need to be computed.

Now, we parametrize x, y, and z, using time-dependent polynomial basis functions, and stack their

coefficients as Then, we define and and, and utilize

augmented Lagrangian method to rewrite the optimization problem as:

METHOD

Fig.1: All agents communicate their current trajectories. In the next itera-

tion, each agent uses this prior communicated trajectories to form the

collision avoidance constraints at the next planning cycle. This in turn al-

lows each agent to act independently. In other words, the communica-

tion strategy takes a joint trajectory optimization problem (first block on

the left) and converts it into nr decoupled problems. Our approach is

GPU accelerated parallelized solution of the decoupled sub-problems

Table 1: Comparison of our optimizer with [1,2] in terms of computation

time, arc-length and smoothness}

Comparisons

Fig. 3: Validating optimizer convergence em-

pirically

(6)

(5a)

(4a)

(4b)

(4c)

(4d)

(4e)

(2) (3)

(1)

(5b)

(5c)

.

