Distributed Geometric and Optimization-based Control of Multiple Quadrotors for for Cable-Suspended Payload Transport

Authors
Khaled Wahba, Wolfgang Hönig

Introduction

- Multi-UAVs are well suited for collaborative applications:
 - Assisting in construction sites,
 - Payload collaborative transportation.

- Cable-Suspended payload transportation:
 - Not using manipulators/grippers,
 - Transportation of heavy objects.

Background

- Given:
 - \(n \) quadrotors carrying a cable-suspended payload,
 - Reference trajectory: \(\{p_0, \dot{p}_0, \ddot{p}_0\} \).

- Objective: payload to track the reference trajectory.

- State-of-the-art [1], [2] does not take into account:
 - Inter-UAV and UAV-obstacle collisions,
 - Formation changes between configurations,
 - Cable tangling,
 - Payload physical size.

Approach

- Distributed Quadratic Optimization Problem (QPs) Formulation:
 - Computation of desired cable forces \(\mu_{id} \).
 - Constraints:
 - Payload trajectory tracking,
 - Inter-UAV, obstacle collision avoidance.

Sim-to-Real Development

- 1) Python-only Simulation
 - Dynamics: Euler Integration,
 - State-of-the-art (SOTA) Controller,
 - QP optimization in CVXPY.

- 2) From Python to C.

- 3.a) Python Bindings (SWIG)
- 3.b) Software-in-the-Loop (SITL)

- 4) Test flight and tuning

Experiments

- 2 CrazyFlies (CFs) of mass \(m_i = 34 \text{ g} \) carrying a \(m_0 = 10 \text{ g} \) payload,
- Length of cables \(l_1 = 0.77 \text{ m}, \ l_2 = 0.705 \text{ m} \),
- STM32 microcontroller (168MHz, 192kB RAM),
- Objective: Track hovering reference trajectory,
- Constraints:
 - Normal vectors \(n_1, n_2 \) for desired hyperplanes,
 - Reference trajectory.

Results

- Each CF runs QPs on-board to compute optimal \(\mu_{id} \),
- The computed optimal solution of the QPs respects the constraints.

References