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Data-Efficient Collaborative Decentralized

Thermal-Inertial Odometry

Vincenzo Polizzi , Robert Hewitt , Javier Hidalgo-Carrió , Jeff Delaune and Davide Scaramuzza

Abstract—We propose a system solution to achieve data-
efficient, decentralized state estimation for a team of flying
robots using thermal images and inertial measurements. Each
robot can fly independently, and exchange data when possible
to refine its state estimate. Our system front-end applies an
online photometric calibration to refine the thermal images so as
to enhance feature tracking and place recognition. Our system
back-end uses a covariance-intersection fusion strategy to neglect
the cross-correlation between agents so as to lower memory
usage and computational cost. The communication pipeline uses
Vector of Locally Aggregated Descriptors (VLAD) to construct a
request-response policy that requires low bandwidth usage. We
test our collaborative method on both synthetic and real-world
data. Our results show that the proposed method improves by
up to 46 % trajectory estimation with respect to an individual-
agent approach, while reducing up to 89 % the communication
exchange. Datasets and code are released to the public, extending
the already-public JPL xVIO library.

Index Terms—Collaborative localization, drones, space
robotics, thermal-inertial odometry.

SUPPLEMENTARY MATERIAL

For code and datasets please visit: https://rpg.ifi.uzh.ch/xctio

I. INTRODUCTION

W ITH the successful deployment of the Ingenuity Mars

Helicopter and the Perseverance rover on Mars,1 multi-

agent collaborative tasks are now being carried out on another

world for the first time. Ingenuity performed 19 flights during

its first year of operations, many of which were done in direct

support of Perseverance’s exploration of Jezero crater. This

continues a new era of exploration for NASA, started by the

MarCO mission in 2018 [1], which saw a pair of co-dependent

cubesats investigate Mars for the first time. Next, NASA’s

CADRE mission plans to send a group of small rovers to

cooperatively explore the Lunar surface in 2024 as part of its

Commercial Lunar Payload Services program [2].

This trend towards smaller, cooperative agents is reflected

by the more dangerous terrain NASA wishes to explore in
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Fig. 1. Schematic representation of the proposed method with two flying
robots in a Mars scenario.

future missions to the Moon, Mars and beyond. These areas

include Recurring Slope Lineae on Mars and lava tubes on the

Moon and Mars. Multiple small agents can be released from

larger rovers or deployed from landers to explore areas that

are too risky for a single agent to explore. It’s also possible for

multiple agents to explore large regions quickly, and deviate

from the primary mission task without risk of jeopardizing the

primary mission timeline.

The ability for agents to localize themselves in an un-

known environment with no prior infrastructure (e.g., GPS)

is a key capability for autonomous operations of multiple

agents (see Fig. 1). Visual-Inertial Odometry (VIO) [3], [4] is

one navigation alternative that the Ingenuity Mars Helicopter

utilizes to estimate its pose during flights [5]. Additionally,

pre-cursors to the CADRE mission, such as the Autonomous-

PUFFER research task [6], have demonstrated the ability of

multiple agents to exchange information while performing

localization to improve their overall estimate by working

together while exploring their work area.

At the same time, there has also been growing interest

and work to incorporate new sensing inputs to autonomous

navigation algorithms that do not rely on day light conditions

and can be used to operate these algorithms in extreme

locations such as lava tubes that are deprived of external

lighting. One of the sensor technologies being investigated

for this purpose are thermal cameras, which measure thermal

radiation from all objects in their field of view [7]. These types

of cameras allow autonomous agents to operate in all types of

lighting conditions and require no external lighting source.

This paper aims to incorporate these two separate threads

(multi-agent localization and thermal sensing) into a single

system based around multiple aerial vehicles to investigate the

benefits that such a system could bring to future missions. We

present a collaborative VIO system architecture that allows

agents to operate in a decentralized way while still making use
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of information that is received from other agents. In addition,

we have incorporated recent advancements in thermal image

calibration into our system to improve VIO performance on

thermal imagery. Our contributions are:

• The development of a scalable, from 1 to N agents, Col-

laborative Thermal-Inertial Odometry using a photometric

calibration algorithm.

• The incorporation of Binary VLAD descriptors in a

thermal-inertial odometry solution.

• A scalable and light communication approach over a

decentralized flying robot system.

• Code and datasets are released as part of the already

public JPL xVIO library2 [8].

II. RELATED WORK

State estimation for multi-agent systems is a well-known

and established problem which has recently gained attention.

The solutions can be divided into centralized and decentralized

approaches. The former relies on a central unit acting as a

server, fusing incoming information from all the agents [9],

[10]. The latter directly fuses data onboard requiring efficient

fusion processes and low data exchange [11]. While a central-

ized version is easier to implement, it relies on a central entity

to always be reachable, never fail, and scale with the number

of agents, limiting the range of exploration. This work focuses

on the decentralized approach to be robust and scalable [12].

Decentralized Simultaneous Localization and Mapping

(SLAM) faces the problem of exploiting communication.

Indirect measurements through the registration of observations

are the preferable approach in many scenarios [13]. Place

recognition has emerged as a compact and data-efficient solu-

tion [14]. The work in [15] uses Vector of Locally Aggregated

Descriptors (VLADs) generated by the NetVLAD [16] to

reduce the communication bandwidth. Instead of sending

information to all the other agents, the agent sends data only

to the robot assigned with a specific descriptor. Although this

strategy lowers the used bandwidth, it limits the system’s

scalability due to the a priori assignment of a centroid of

the clusterized feature space. We overcome this problem and

generate binary VLADs from the feature descriptors extracted

from the frames.

The evaluation of graph-based optimization vs. filter-based

approaches for structure from motion has been rigorously an-

alyzed in [17]. The conclusion is that optimization approaches

outperform filtering in terms of accuracy per unit of computing

time. Visual SLAM improves accuracy by increasing the

number of features while having minor effects when increasing

the number of keyframes. However, the analysis was done with

a standard Extended Kalman filter (EKF) formulation, which

models the features in the vector state, and the computational

time grows quadratically with the number of observations.

Other approaches such as the Multi-State Constrained Kalman

Filter (MSCKF) [18] express the constraints without including

the 3D feature position in the filter state vector, resulting in

computational complexity linear in the number of features.

2[Online]. Available: https://github.com/jpl-x/x

TABLE I
OVERVIEW OF THE STRENGTHS OF STATE-OF-THE-ART VISUAL-INERTIAL

ODOMETRY FRAMEWORKS.

Thermal Collaborative Decentralized Data-Efficient Remarks

Schmuck et al. [9], [10] ✗ ✓ ✗ ✗ Centralized with loop closure
Cieslewski et al. [15] ✗ ✓ ✓ ✓ Graph-based NetVLAD
Zhu et al. [21], [22] ✗ ✓ ✓ ✗ SLAM and Kalman features
Delaune et al. [23] ✓ ✗ ✗ ✗ Thermal intertial odometry
This work ✓ ✓ ✓ ✓ Filter-based Thermal VLAD

The work in [19] showed that MSCKF competes with graph-

based optimization approaches in terms of accuracy and

computational cost. We focus our method on a filter-based

approach using the MSCKF formulation of the JPL xVIO

library, targeting onboard rotorcraft flight applications. We

extend the xVIO back-end to fuse multi-agent data, devel-

oping a collaborative formulation of the MSCKF. We use

the Covariance Intersection (CI) algorithm [20] in order to

avoid the filter being overconfident in the resulting updates.

The CI overestimates the resulting covariance after fusing

the measurements coming from several agents, ensuring filter

consistency. Our back-end is similar to the research in [21]

and [22].

Thermal-inertial solutions have recently received consider-

able attention for odometry systems in challenging scenarios.

The technology was not widely used due to its cost and

poor resolution. However, recent advances in thermal imaging

have made thermal cameras more affordable, with a smaller

footprint, higher quality and modest power consumption en-

abling the portability to robotics applications [7]. The work by

Delaune et al. [23], and Khattak et al. [24], have shown the

use of raw thermal data to navigate in dark scenarios where

conventional visual cameras fail. Despite the outstanding re-

sults obtained by these works, thermal-infrared cameras suffer

from photometric inconsistencies due to the thermography

generation process. As a result, a standard computer vision

program that relies on the photometric consistency assumption

might fail to deliver reliable perception data in a sequence of

frames. In this direction, the work by Das et al. [25], develops

a photometric model of Thermal Infrared (TIR) cameras to

attenuate such disturbances, obtaining photometric consistency

over time and space. However, place recognition with thermal

imaging remains an open challenge, and its application in

collaborative systems has not been investigated.

Tab. I summarizes the related work on collaborative visual

odometry systems. Our proposal is a fully decentralized ther-

mal inertial odometry (TIO) that uses place recognition with

thermal imaging and benefits from a data-efficient collabora-

tive strategy. To the best of our knowledge, this path has not

been explored.

III. METHODOLOGY

We have a set U of U Unmanned Aerial Vehicles (UAVs),

equipped with a monocular thermal-infrared camera and

IMU. Each drone can fly independently by running the JPL

xVIO [8]. At start-up, each drone is initialized with the same

inertial reference frame. The system extracts Features from

accelerated segment test (FAST) corners [26] and uses the

pyramidal implementation of the Lucas-Kanade tracker [27]

to build tracks out of the extracted features. We associate an

Oriented FAST and Rotated BRIEF (ORB) descriptor [28] to

https://github.com/jpl-x/x
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each track to perform track matching between the current UAV

tracks and the ones received from the other agents. In xVIO

there are three kinds of tracks:

• Opportunistic: concatenation of the Lucas-Kanade

tracker results over a sequence of frames.

• SLAM: tracks corresponding to the feature points saved

in the state vector. For these points we know the inverse

depth parameterization.

• MSCKF: opportunistic tracks that have a size between

two and M frames and fulfill the requirements to perform

an MSCKF update, that is the baseline between two

features in the track is higher than a certain threshold.

An MSCKF track contains a wide baseline between the

tracked points, hence a match between opportunistic tracks

of two different UAVs fulfill the requirements to define a

single MSCKF track. For this reason, hereafter, we will talk

only about MSCKF and SLAM tracks. Figure 2 depicts a

diagram of our method implemented in the xVIO library.

The front-end provides feature point descriptors and generates

a VLAD descriptor contained in the request message. The

Track Manager unit receives the matches, stores them and

forms tracks. The tracks are employed to perform MSCKF

and SLAM updates: when a message is received, the back-

end finds correspondences between the current tracks and the

received ones. The matches generated from the correspon-

dences are then processed as SLAM-SLAM matches updates,

or stored and processed afterward as collaborative MSCKF

updates.

Details of the the EKF updates, the state and covariance

propagation, the thermal front-end and the communication

pipeline are described in the following.

A. Thermal Front-end

Thermal images show low contrast and bring photometric

inconsistency over a sequence of frames. To deal with these

problems, we employed the work of Das et al. [25] that at-

tenuates the low-frequency non-uniformness and photometric

inconsistency. Figure 4 shows that calibrated images return

a higher Harris cornerness response than the uncalibrated

ones, and hence make it possible to detect and track stronger

corners. FAST corner detector compares the intensity value of

a central pixel with a ring of pixels around it. A corner is

detected if the intensity of N contiguous pixels in the ring is

higher or lower than the central one by a threshold t. With

calibrated thermal frames, the gradient of the image is high,

and hence the value of t can be set to detect the most distinctive

corners. We counted the number of tracks and evaluated the

feature life for both calibrated and uncalibrated frames. As

shown in Figure 3, applying spatial and temporal parameters

calibration results in approximately four times the number of

FAST corners being successfully detected and tracked with

the Lucas-Kanade tracker than on uncalibrated images, with

average feature track length on calibrated images also being

increased. Namely, it is harder to lose the tracked corners

since the image has higher contrast than the original thermal

frame. This result implies that since four times more tracks

are detected, we can potentially have four times more track
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Fig. 2. Block diagram of our proposed method. Our solution can receive
messages from the other agents and find SLAM-SLAM and MSKCF-MSCKF
matches between the received data and the local tracks.

Fig. 3. Tracks representation in (a) calibrated and (b) uncalibrated thermal
image. Blue SLAM tracks, orange MSCKF tracks, purple Opportunistic
tracks.

correspondences between the robots, hence more collaborative

updates for the EKF.

B. State definition

In the xVIO back-end, the state vector x (1), can be divided

into the states concerning the IMU xI and the visual part xV .

The first term, xI ∈R16, defined in (2) includes the position,

velocity and orientation quaternion of the IMU frame {i}
with respect to the world frame {w}, the gyroscope and the

accelerometer biases, bg and ba respectively.

The second term, xV ∈ R7M+3N , defined in (3) is split into

the sliding window xS, that has the positions
{

p
ci
w

}

i
and the

orientations
{

q
ci
w

}

i
of the camera frame of the last M image

time instances, and the feature states xF (4), that contains the

inverse depth parametrization of the landmarks fi with i =
1, ...,N.

x =
[

xI
T xV

T
]T

(1)

xI =
[

pi
w

T
vi

w
T

qi
w

T
bg

T ba
T
]T

(2)

xS =
[

p
c1
w

T
... p

cM
w

T
q

c1
w

T
... q

cM
w

T
]T

(3)

xF =
[

f 1
T

... f N
T
]T

(4)

The error state vector δx can also be divided as the state

vector. The error state is defined for the position vectors

as the difference between the true and estimated position,

pi
w − p̂i

w = δ pi
w ∈ R3, and similarly for the velocity and

inertial bias errors. Differently, for the quaternions, the error
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Fig. 4. The histogram of the corner response of the calibrated and uncalibrated
data, shows that the calibrated images have a higher Harris cornerness
response.
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Fig. 5. Collaborative MSCKF representation. ic0 and ic1 are the cameras of
two different agents 0 (green) and 1 (red) respectively, that are tracking the
same landmark w p j .

vector is given by qi
w = q̂i

w ⊗ δqi
w ∈ R4, where ⊗ is the

quaternion product. For a minimal representation of the error

quaternion, we use the small angle approximation, namely

δq ≃
[

1 1
2
δθ T

]T
, hence δθ ∈ R3 represents the quaternion

error in a lower dimension space.

The measurement model of 3D landmark w p j in the world

frame {w}, observed by the camera {ci}, is the normalized

projection on the unit focal length camera plane:

iz j =
1

ci z j

[

cix j
ciy j

]

+ in j (5)

where

ci p j =
[

cix j
ci y j

ci z j

]T
(6)

=C(qci
w)(

w p j − pci
w) (7)

and in j is a zero-mean white Gaussian measurement noise

with covariance matrix iR j = σ2
V I2. We assume the standard

deviation σV is uniform over the image and it depends on the

performance of the visual front-end. C(qb
a) is the rotation ma-

trix associated with the quaternion qb
a such that bx =C(qb

a)
ax.

C. MSCKF-MSCKF update

We used the same approach proposed by Zhu [21]. Here we

want to give a detailed overview of the method, and how this

is applied to the xVIO stack.

The xVIO back-end performs MSCKF [18] updates.

MSCFK minimizes the residual between tracked feature points

and the back-projection on the camera plane of the triangulated

landmark. Figure 5 represents how the MSCKF residuals can

be interpreted in a collaborative setup. The tracked landmark
w p j is triangulated by using all the measurements of robots’

cameras, ic0 and ic1. Then the resulting 3D point is projected

into the camera planes that observed the feature.

We express the measurement model izl
j ∈R2 of the observed

feature iẑl
j in the camera frame i ∈ I⊆ {1, ...,M} of the robot

l ∈ U using the model in (7) as a nonlinear function of the

state x and the landmark w p j (8), such that the measurement

innovation iδ zl
j =

izl
j −

iẑl
j can be linearized as in (9).

izl
j = h(xl

,

w p j)+
inl

j (8)

iδ zl
j ≃

(i, j)H l
xδxl + (i, j)H l

p
wδ p j +

inl
j (9)

By stacking together the residuals for all the observations of

the landmark wδ p j for the robot l we write:

δ zl
j ≃

jH l
xδxl + jH l

p
wδ p j +nl

j (10)

Since wδ p j is neither part of the state, nor can be included

in the noise, we need to get rid of it to perform an EKF

update. With this purpose, we multiply on each side by the

left nullspace A j of jH l
p. By doing so we split the system into

two subsystems, one δ zl
0 j

that is a function of δxl only and

one δ z̄l
0 j

that also depends on wδ p j (11).
[

δ zl
0 j

δ z̄l
0 j

]

=

[

jH l
0x

jH̄
l
0x

]

δxl +

[

jH l
0p

0

]

wδ p j +

[

nl
j

n̄ j
l

]

(11)

The equations (9)-(11), describe the standard procedure to

perform an MSCKF update for the agent l. In particular in a

single UAV update, we feed the EKF with the bottom part of

the system (11). To perform the collaborative MSCKF update,

we need to write a residual that depends on the states of all

the agents that observed the same landmark w p j. Writing such

a residual is possible by stacking together all the δ zl
0 j

in (11)

with l ∈ L where L= {l0, ...lL} is the set of the L robots that

observe w p j (12).








δ z̄
l0
0 j

...

δ z̄
lL
0 j









= D(









jH
l0
0x

...
jH

lL
0x









)







δxl0

...

δxlL






+









jH
l0
0p

...
jH

lL
0p









wδ p j +









n
l0
j

...

n
lL
j









⇒ δ z̄0 j
= jH0x

δx+ jH0p

wδ p j +n j (12)

Where D(·) represents the matrix having a diagonal that

corresponds to the elements of the input vector.

To perform an EKF measurement update with the resulting

equation (12), we need to multiply on each side by the left

nullspace A j of jH p and by doing so obtain two subsystems

as in (11). Finally, we take the part that depends on the state

only,

δ z̄ j =
jHxδx+n j (13)

and perform the CI-EKF (19)-(22) update to take into account

the possible correlations between the agents states.

The Jacobian jHx can be rewritten according to the state

the various columns refer to as:

δ z̄ j =
[

H l0
. . . H lL

]

δx+n j (14)
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Fig. 6. Collaborative SLAM representation. M−2c0 and 0c1 are the anchor
poses of two different agents 0 (green) and 1 (red) respectively. These anchors
observed the landmark w p j first with respect to the other frames, w p j is

parametrized according to M−2c0 for UAV 0 and to 0c1 for UAV 1.

D. SLAM-SLAM update

To perform the collaborative update between two SLAM

features, we adopted the approach proposed by Zhu [22] for

its efficiency. The method constrains the EKF, that is, when

two SLAM features of two different agents 0 and 1 match,

it implies that they refer to the same 3D point in the world

frame and so the difference between the landmarks in the

world frame must be zero:

w p j
0 −w p j

1 = 0 (15)

as Figure 6 shows.

In xVIO the SLAM landmarks are stored in the EKF state in

terms of an inverse depth parametrization. The parametrization

is calculated with respect to the anchor pose w pl
a j

, also part of

the state, that is the pose of the camera frame that observed

the feature point first. Hence, we can write (15) in terms of

the states of the two robots:

w p0
a j
+

1

ρ0
j

C(w p0
a j
)T





α0
j

β 0
j

1



−w p1
a j
−

1

ρ1
j

C(w p1
a j
)T





α1
j

β 1
j

1



= 0

(16)

where α l
j, β l

j , and ρ l
j are the inverse depth parametrization of

the landmark w p j
l observed by the drone l. Linearizing (16),

we can write the residual obtaining a model that depends on

the states of the two UAVs involved in the update as in (14),

that is then used to perform the CI-EKF (19)-(22) update.

E. EKF prediction step

The prediction step is the same as in xVIO, that is the IMU

measurements are propagated using the inertial integration

model described in [29]. For sake of completeness we report

the IMU measurement model but we refer the reader to

Delaune et al. [8] work for more details:

ω IMU = iω i
w +bg +ng (17)

aIMU =C(qi
w)(a

i
w −w g)+ba +na (18)

where ng and na are zero-mean Gaussian white noises, the

biases bg and ba are modeled as random walk with zero-

mean Gaussian white noise. The gravity vector g is considered

constant, the Coriolis forces and the planet curvature are

neglected.

F. EKF measurements update step

To fuse the data coming from different agents, we should

keep track of the cross-correlation between the various states.

However, doing so is expensive in terms of memory since

the number of elements in each drone’s covariance will

increase quadratically with the number of agents sharing data.

The Covariance-Intersection (CI) algorithm [20] allows us to

neglect the correlation information between the robots, and

perform data fusion with consistent covariance information.

Namely, the resulting covariance out of the CI algorithm is

larger than the real estimate one could obtain considering the

cross-correlation. By doing so, the EKF is not overconfident,

and it is kept consistent. The CI algorithm consists of a convex

minimization problem that finds the best weights ωl to scale

the covariances of each agent l ∈ {l0, ...lL} involved in the

update to obtain a covariance with the minimum eigen values.

We use the CI-EKF to update the drone state in the same form

Zhu proposed, where l0 denotes the drone where the update

is performed:

S = R+ ∑
l∈{l0,...lL}

1

ωl

H lT

Pl
k−1H l (19)

K =
1

ωl0

P
l0
k−1H l0

T

S−1 (20)

P
l0
k = (Iωl0

−KH l0
T

)
1

ωl0

P
l0
k−1 (21)

δxl0 = Kδ zl0 (22)

Where R is the covariance matrix of the Gaussian noise

described in Section III-B. Pl
k−1 is the covariance term of the

drone l, whereas P
l0
k is the new covariance of the agent that

is performing the update. Notice that Iωl0
is a diagonal matrix

where each element a
ωl0
i of the diagonal is defined as:

a
ωl0
i =

{

1 if i ∈ J

ωl0 otherwise
(23)

J is the set of ids in the state vector x that are directly involved

in the update (i.e., the parts of the state that will be updated).

This formulation is crucial to perform the CI update without

making the EKF underconfident on the part of the state not

involved in the collaborative update.

Before propagating the state and the covariance to remove

outliers, the innovation of each collaborative update undergoes

a χ2 test with 95% confidence. We compute the Mahalanobis

distance with the real covariance of each agent and not with

the one scaled by the CI algorithm. The reasons behind this

choice are twofold:

• Being conservative: the original covariance is smaller than

the scaled one and so the resulting distance is larger,

hance is more difficult to pass the χ2 test.

• Avoid unuseful computation: we compute the CI covari-

ance only if the test is passed.
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G. Communication Pipeline

To perform the collaborative MSCKF and SLAM updates,

the agents need the tracks, the state, and the covariance of

the other robots. We define a message called MessageUAV

which contains all the information needed to perform the

collaborative updates. A naive approach to share data between

agents would be one in which each robot sends a MessageUAV

to all the others at the camera frame rate. The result would

be an extremely high usage of the communication channel

considering that an estimate of the message size is around

190.7kB. We computed this estimate by averaging the weights

of the MessageUAV sent by the robots in simulation.

To avoid this significant usage of the bandwidth, we devel-

oped a keyframe-based request/response data exchange system

to lower the data sent over the network. To perform the

collaborative updates, the agents need to find correspondences

between the features they are tracking and the tracks they re-

ceive. Hence, this is the same as performing place recognition

and then loop-closure among a series of keyframes.

Each drone sends to all the others a message named

RequestUAV at the camera frame rate. This message contains a

Binary VLAD descriptor of the frame the agent is viewing. We

use a modified version of the BVLAD [30], to perform place

recognition between the UAVs. The ORB descriptor is binary

and so we create a VLAD by using binary operations only, in

particular, we use the OR (∨) and the AND (∧) operations,

instead of sums and subtractions. Doing so we do not need

to perform normalization nor exponential decay law to reduce

the impact of recurring features. VLADs are of a fixed length,

and they can be shortened applying dimensionality reduction

through PCA [31]. The resulting request message has a fixed

size that is much smaller than a MessageUAV. We created

a coarse vocabulary of ORB visual words of 64 centroids.

Hence, without applying any dimensionality reduction sharing

a VLAD is the same as sharing 64 ORB descriptors. The result

is that the RequestUAV message weighs 2.05kB, including the

timestamp and the id of the sender, resulting in lower data

consumption. When a robot receives the request message from

another agent, it looks among its keyframes to find a loop-

closure. A keyframe contains the information needed by the

MessageUAV and a VLAD. The score between the received

descriptor r j and the keyframe one rk is given by:

s
.

=
Hamming(r j ∧ rk)

Dmax

(24)

Where Dmax is the maximum distance that can be computed

between two descriptors and Hamming(·) is the Hamming

distance of the resulting vector. If the score is over a certain

threshold, the keyframe is wrapped into a message and shipped

to the agent who sent the request.

Each agent maintains a database of keyframes. To populate

the database, we follow the same approach proposed for

PTAM [32]. Namely, every time the ratio between the baseline

b, that is the distance between the previous keyframe and the

current camera pose, and the average depth z̄ of the tracked

features is higher than a threshold that is usually around

10−20%, a new keyframe is defined.

TABLE II
ABSOLUTE TRAJECTORY ERROR AND STANDARD DEVIATION FOR THE

VISUAL DATASETS.

Collaborative xVIO [8] Improvement
Dataset Agent Ours baseline

Castle UAV0 0.4312±0.2632 0.6183±0.4136 30.26%
Parallel UAV1 0.3871±0.1860 0.4817±0.3039 19.64%

UAV2 0.6108±0.3730 0.5169±0.3153 -18.17%

UAV0 0.3437±0.1678 0.3788±0.1973 9.26%
Castle UAV1 0.3663±0.1531 0.7186±0.3547 49.02%
Around UAV2 0.5670±0.2851 0.5995±0.3276 5.42%

UAV3 0.8717±0.4094 0.7240±0.3524 -20.40%

TABLE III
ABSOLUTE TRAJECTORY ERROR AND STANDARD DEVIATION FOR

THERMAL MARS YARD DATASET.

Collaborative Collaborative Independent xVIO [8]
Dataset Agent Calibrated Ours Ours Calibrated Ours Baseline

Mars UAV0 0.1610±0.0731 0.1860±0.0928 0.1906±0.0882 0.1835±0.0926
Yard UAV1 0.0438±0.0189 0.0812±0.0381 0.0621±0.0248 0.0813±0.0382

IV. EXPERIMENTS

Figure 8 shows the 3D representation of the environments

we recorded the data for testing our system. To validate our

system, we used real thermal recordings from the JPL Mars

Yard. The data was recorded from the industrial version of

the FLIR Boson camera with a lens providing a 95-deg field

of view (FOV). It generates 640 x 512 images in the 7.5µm

- 13.5µm longwave infrared spectral range, with a thermal

sensitivity under 40mK and an 8-ms time constant. The camera

was calibrated using as a target a circle grid pattern laminated

over a Gatorfoam board left for 5 minutes in the sun, then the

Kalibr toolbox [33] was used to find the calibration parameters.

The IMU used was the ICM20608 on-board the Pixhawk mini.

This dataset is the same as the collection used for the work by

Delaune et al. [23]. We merged two Robot Operating System

(ROS) bag files where two UAVs fly two squared trajectories

with different altitudes, over the JPL Mars Yard for almost

10m, Figure 7 illustrates the two drones trajectories with their

estimates. The data is collected with a five-minute distance in

time. Therefore, we can rely on the assumption that the thermal

fingerprint of the objects does not drastically change over time.

The results of our system compared against the baseline that

is the standard xVIO implementation are reported in Table III.

We used the RPG trajectory evaluator tool [34] to compute the

Absolute Trajectory Error between the ground-truth and the

estimates. The collaborative setup with photometric calibrated

thermal images outperforms the standard xVIO by 12.26 %

Fig. 7. Trajectories estimate results for UAV0 and UAV1 in the Mars Yard
dataset.
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Fig. 8. Dataset scenarios (a) ”Castle Around” four drones fly around the Inveraray Castle model (https://skfb.ly/6z7Rr) by Andrea Spognetta licensed under
Creative Commons Attribution-NonCommercial. (b) ”Castle Parallel” three drones fly parallel trajectories in front of the castle. (c) Two drones fly squared
trajectories on the Mars Yard at JPL.

TABLE IV
A MessageUAV OBJECT WEIGHS 190.7 KB WHILE A REQUEST MESSAGE

OCCUPIES 2.05 KB.

Dataset Input Naive [kB] (Ours) [kB] Improvement

Castle Message UAV 639.60 264.30 57.60%
Around Request UAV - 6.89

Castle Message UAV 152.56 141.12 6.42%
Parallel Request UAV - 1.64

Mars Message UAV 234.37 22.88 89.17%
Yard Request UAV - 2.51

A MessageUAV object weighs 190.7 kB while a request message occupies
2.05 kB. The data reported by the table are estimated according to the number
of messages the agents exchange in simulation and real data scenarios. The
camera frame rate for all the datasets is 30Hz. The length in seconds for
each dataset is 30s, 9s, 20s for the Castle Around, Castle Parallel, Mars

Yard respectively.

TABLE V
COMPARISON BETWEEN COVINS [10] AND OUR APPROACH.

Algorithm Agent N. of Messages sent Max CPU [%] Max Mem [MiB] ATE [m]

UAV0 4587 208.47 710.8 0.1641±0.0624

COVINS [10] UAV1 4524 211.28 643.5 0.3626±0.1214
UAV2 4457 204.87 681.1 0.2058±0.0614
UAV3 4788 201.18 701.8 0.2897±0.1132

Server - 325.78 710.9 -

UAV0 1482 165.66 133.9 0.3437±0.1678
Ours UAV1 1414 158.56 124.8 0.3663±0.1531

UAV2 1475 154.18 139.1 0.5670±0.2851
UAV3 1465 170.79 136.2 0.8717±0.4094

and 46.12 %.

We also created two synthetic datasets with visual data to

stress different aspects of our method. We modified the VI-

Sensor Simulator [35] to generate ground-truth visual, inertial

and landmark data to test the back-end of the system. The

drones simulated by the VI-Sensor Simulator mount a visual

camera that generates 752 x 480 images with a focal length of

455 px at 30 Hz. The IMU sensor simulated is the ADIS16448

that generates data at 200 Hz. The datasets Castle Around

and Castle Parallel are recorded using a 3D reconstruction

of the Scottish Inveraray Castle. The former simulates four

UAVs flying 220m squared trajectories around the castle with

different altitudes and rotations. The latter consists of 3 drones

flying 30m parallel trajectories at the same altitude which

stresses the communication pipeline. Table II shows the results

using the collaborative approach.

Table IV reports the different data usage between the proposed

communication pipeline and the naive approach in the different

datasets. Notably, our approach shows a decrease of data

exchanged by 89 % in one of the scenarios. In the Castle

TABLE VI
IN THE FIRST ROW THE AVERAGE TIME NEEDED BY EACH MODULE

EXPRESSED IN [MS]. THE SECOND ROW SHOWS THE COMPUTATIONAL

TIME PERCENTAGE OCCUPIED BY EACH BLOCK.

VLAD Feature Loop Photometric Tracker MultiSLAM MultiMSCKF &
Generation Matching closure calibration MSCKF Tot

0.08 7.19 3.03 22.53 13.45 2.46 1.15 + 3.18 53.07
0% 13.55% 5.71% 42.44% 25.34% 4.63% 8.16% 100%

Parallel the improvement is lower due to the trajectory design,

where the drones observe the same scene and loop closure

is performed all along the path. To simulate the different

drones we used containerization, where each drone is a Docker

container and runs independently from the others. The docker

base image we used to run the collaborative setup is a mod-

ified version of the dt-base-environment of the Duckietown

platform [36].

Finally, we also compared our system with visual data

against the state-of-the-art Centralized Cooperative system

COVINS [10]. The results, reported in Table V, show that

the centralized method outperforms our system in terms of

accuracy of the trajectory estimation in almost all of the agents.

This result was expected since the COVINS system performs

loop closure detection and global pose and map optimization.

In contrast, our filter-based approach shows lower memory

and CPU usage as well as a much lower number of messages

exchanged in the network compared to COVINS.

For completeness, we evaluated the time performance of our

methods. Table VI reports the average time in milliseconds

needed by each block of the proposed system to process the

received information. The total time needed to update the

agent’s state is about 53ms. Hence our system can perform

a collaborative state estimate with a frequency of 20Hz.

The implemented pipeline leaves a margin of improvement

considering more efficient multi-threading approaches.

V. CONCLUSION

With this work, we extended the JPL xVIO library with a

decentralized multi UAV system that can work with thermal

and visual data. To the best of our knowledge, the described

project is the first work that implements a collaborative

Thermal-Inertial Odometry system using a photometric cal-

ibration algorithm that improves feature matching for loop

closure detection. We developed a multi-threading commu-

nication pipeline that reduces the bandwidth compared to a

naive approach and maintains system scalability. Our Code

and associated datasets are open-source.
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