
Toward Capability-Aware Cooperation for Decentralized Planning

Charles Jin, Zhang-Wei Hong, Martin Rinard1

Abstract— Many works cast the problem of decentralized
multi-agent cooperation as fundamentally one of misspecified
(or incorrectly inferred) goals. In this work, we show that
challenges can also arise naturally due a difference in capa-
bilities—even in an idealized setting of perfectly aligned agents
with full information. In particular, we consider cooperative 2-
player games, in which each agent employs a truncated version
of Monte Carlo tree search (MCTS) for infinite-horizon inter-
actions that limits their simulation to a maximum depth. We
provide examples of games in which deviations in computational
capability between agents can lead to arbitrarily poor outcomes.
To address this challenge, we propose an algorithm that main-
tains a belief over the other agent’s computational capacities
and incorporates this belief into the MCTS. We experimentally
validate that our capability-aware algorithm avoids the anti-
cooperative behavior of the naı̈ve approach in several toy
settings. These results thus suggest that decentralized multi-
agent settings requires further consideration of the challenges
arising from differing computational (or cognitive) capabilities.

I. INTRODUCTION

Consider a generic two-player cooperative game where
an expert is paired with a novice. Intuitively, the expert
should only play strategies which the novice can reasonably
infer and react to. Otherwise, the expert may attempt a
complex strategy which has a high reward assuming optimal
play, but incurs a costly penalty if the novice missteps.
This observation is supported by experimental studies in
psychology and cognitive science in the context of general
strategic games [1], [2] and chess [3], [4].

This work initiates a study of the challenges of cooperation
between agents of different capabilities in an idealized setting
with perfectly aligned agents and full information. Our
contributions are as follows: first, we introduce a formal
setting for studying the problem of cooperation between
heterogeneous agents of differing computational capacities.
In particular, each agent searches using the MCTS method,
but may have different simulation depths. Second, we de-
scribe the Capability-Aware Monte Carlo tree search (CA-
MCTS) algorithm, which explicitly maintains a belief over
the other agent’s search depth, and incorporates this informa-
tion during the search process. Several experiments support
the ability of CA-MCTS to overcome the difficulties of
differing computational capacities in two-player cooperative
navigation tasks, whereas vanilla MCTS leads to deadlocking
or infinite loops of negative rewards.

II. RELATED WORKS

Our work is relevant to teammate/opponent modeling
in cooperative multi-agent planning [5] tasks. Cooperative

1CSAIL, MIT, Cambridge, MA, USA. Corresponding author contact:
ccj@csail.mit.edu.

multi-agent planning aims to coordinate a team of agents
to maximize a joint utility function. Classic works employ
heuristic search algorithms on each agent to maximize the
joint utility. For example, [6] coordinate collision-free paths
for agents in a team using the rapidly-exploring random tree
(RRT) algorithm. In addition to heuristic search, prior works
[7], [8] in multi-agent reinforcement learning (RL) [9] jointly
learn policies for each agent. Both lines of work assume
that the policies of teammates are known and controllable,
while we assume the teammates are uncontrollable and have
unknown policies.

An application domain of particular interest is human-
robot interaction, where the humans’ policies are unknown
and thus robots have to collaborate without full knowledge
of their teammates. One approach is for the robot to apply
inverse reinforcement learning to infer the value function of
the human [10], [11], [12]. However, humans are well-known
to exhibit sub-optimal behavior, which poses a challenge to
works that model humans as perfectly rational. One way to
model such behavior is called bounded rationality, wherein
humans are assumed to be (approximately) optimal subject
to certain constraints [13], [14]. For instance, several works
consider agents which have limited capacity to reason recur-
sively about other agents [15], [16], and prove convergence
assuming the recursive depths in the population follows
a Poisson distribution. [17] models human teammates as
having bounded memory in the sense that they reason over
only the most recent k interactions. However, all these works
treat the amount of “boundedness” as a known quantity; in
contrast, our work studies the problem of adapting to an
unknown level of boundedness.

III. PROBLEM FORMULATION

We formulate the problem of decentralized coopera-
tion as a two-player game, characterized as an infinite-
horizon discrete-time decentralized Markov decision pro-
cess (Dec-MDP) [18]. The Dec-MDP is given by a tuple
⟨S,N ,A, P,R, ρ0, γ⟩, where S is the set of all states of
the MDP, N = {0, 1} denotes the two players, A denotes
the set of available actions, P : S × A → S × {0, 1}
is the state transition function, R : S × A → R is the
reward function, ρ : S × {0, 1} → [0, 1] is an initial state
distribution, and γ ∈ [0, 1) is the time discounting factor.
Each episode of the game starts from a state and player s0, n0

sampled from ρ. At each timestep t, player nt selects an
action at based on st; then the two players receive a reward
rt = R(st, at) and transition to the next timestep t+1 with
state st+1, nt+1 = P (st, at). The goal of both players is to
maximize the joint return

∑∞
t=0 γ

trt.



A. Monte Carlo tree search

We will assume that the two agents in the Dec-MDP play
using the Monte Carlo tree search (MCTS) algorithm [19],
a common approach for sequential decision making tasks;
MCTS has seen a surge in popularity for games and planning
in recent years since forming an integral part of AlphaGo,
the super-human computer program for the game of Go [20].
Here, we give a basic description of the MCTS algorithm to
motivate our setting; for a more complete overview, we refer
the reader to [21].

Given a state s0 ∈ S , we can formally construct a game
tree T as follows: the root of the tree is the initial state
s0, and two nodes s and s′ in the tree have a parent-child
relationship with directed edge a : s → s′ if and only if
we have a transition P (s, a) = s′; in this case we also label
the child node s′ with the reward R(s, a). Finally, we say a
node with state s has value v(s) if the optimal directed path
starting from s yields total (time-discounted) rewards of v(s).
Clearly, the value of a node can be computed recursively
given the value (and rewards) of its children.

The planning problem can thus be formalized as comput-
ing the value of all children of the root node. Of course,
in general this may require searching the game tree exhaus-
tively; hence Monte Carlo tree search provides a method of
constructing incremental approximations T̃ of the game tree
with estimated values.

We provide a brief overview of the main steps in MCTS.
The search is initialized with the single root node T̃ = s0.
At each step, we Select a path to a leaf node s, Expand
the leaf node by adding all legal transitions as children,
Simulate an initial value estimate of s, then Backpropogate
the estimated value of s to the root, using the recursive
formula to update the value of its predecessors. In particular,
Simulate performs m simulations of random actions down
to a maximum depth of d (or until the game terminates),
and takes the average cumulative reward to be the initial
value estimate. Select is subject to the usual explore-exploit
tradeoff (exploration prefers nodes which have fewer visits;
exploitation prefers nodes with higher estimated values); the
popular Upper Confidence Trees (UCT) variant [22] treats
each choice as a multi-armed bandit problem, using the
celebrated UCB1 method [23] to achieve good theoretical
guarantees (and excellent performance in practice).

IV. CAPABILITY-AWARE COOPERATION

In this section, we describe an modification of the MCTS
method for cooperative games which explicitly adjusts for
the capability of the other player. In particular, each player
maintains a prior over the depth bound of the other agent,
which is updated each time the player observes an action
from the other player. The player then adapts its play to
incorporate its belief about the capability of the other player.

For the remainder of this section, we will fix the discussion
from the perspective of an arbitrary player i. Each player
in the game independently updates their own prior about
the other player, and runs their own modified search in a

decentralized manner. We begin by formally defining the
notion of a depth prior:

Definition 1: Given a player j ̸= i, the depth prior pij is
a probability distribution over the search depth of the player
j, i.e., pij(d) is (the belief of player i about) the probability
that the player j has maximum search depth d.

We also introduce the corresponding cumulative distribu-
tion, which will be useful our later development:

Definition 2: The cumulative depth prior is defined as
P i
j (d) =

∑∞
k=d p

i
j(k), i.e., the probability that the player j

has maximum search depth at least d.
We now show how to condition a game tree on a depth

prior. In what follows, we define the multiplication of a tree
T by a scalar s as the same tree but with rewards multiplied
by s; and the addition of two trees T1 and T2 (with the same
structure) as the tree with rewards at all nodes equal to the
sum of the corresponding nodes in T1 and T2.

Definition 3: Given a game tree T , we define the trun-
cation at depth d, denoted T d, to be the same tree but with
a reward of 0 for any node at depth greater than d.

Definition 4: Given a game tree T and a depth prior p,
we define the game tree conditioned on the depth prior
to be T |p =

∑∞
d=0 p(d)T d.

Intuitively, given the ground-truth (possibly infinite-depth)
game tree T and a depth prior pij , instead of playing
optimally using T , player i should instead play according
to T |pij , which incorporates its belief about how deep into
the game tree player j is able to explore. Hence, to apply this
insight to our setting, it remains to show two things: first,
how player i should infer pij from a history of interactions;
and second, how to incorporate the belief pij when player
i is not given a ground truth game tree T , but is rather
computing an online approximation to the game tree using
MCTS at every step.

A. Capability-Aware MCTS

In this section, we describe a method of modifying MCTS
to account for the depth prior. Note that the naı̈ve method—
which simply performs MCTS as usual to recover an approx-
imate game tree T̃ , and then conditions the approximate tree
on the depth prior T̃ |pij—does not account for the effects
of capability during the search procedure.1 In particular,
since MCTS preferentially explores portions of the game
tree with higher values, different search depths yield different
approximations to the ground-truth game tree, as the search
depth directly affects estimates of node values.

Instead, we propose to perform MCTS on T |pij , the true
game tree conditioned by the depth prior. Clearly, as T is
generally too large to represent in complete form, we also
cannot compute T |pij directly. However, our main insight
is that we can efficiently simulate MCTS over T |pij with
negligible overhead. The key is that T |pij differs from T
only in the rewards, so given a node in T and pij , we can
lazily compute the corresponding node in T |pij . In particular,

1Another wrinkle is that action selection for MCTS is most often
performed by taking the node with the most visits, rather than value; in
this case, the naı̈ve approach does not directly yield a useful algorithm.



we will condition all rewards (i.e., those collected during
simulation and backpropagation) on the probability that the
other player would have been able to observe the reward:
given a node at depth d with reward r, we will instead collect
a reward of P i

j (d) · r after conditioning on the depth prior
(and before applying the time-based discount factor). We call
this version Capability-Aware MCTS, or CA-MCTS. The
following theorem establishes the correctness of CA-MCTS:

Theorem 1: Capability-Aware Monte Carlo tree search
over the game tree T with depth prior pij is equivalent to
Monte Carlo tree search over the game tree T |pij .

To the best of our knowledge, this relationship also holds
for any variant of vanilla MCTS (e.g., UCT).

B. Updating the Depth Prior

We next describe how to update the depth prior given new
evidence (i.e., an action by the other player). The key is to
compute the set of depths at which the other player’s action
would have been rational. Repeated interactions yields the
relative frequency that the other player’s actions were rational
at a given depth. These relative frequencies form the basis
of the depth prior. We begin with the following definition:

Definition 5: An action a is rational at depth d if a
achieves the maximum value over all possible actions at the
root of T d, the truncation of the ground-truth game tree T
at depth d.

The main challenge is finding the set of depths at which
the other player’s action a is rational. A naı̈ve approach
would be to simulate MCTS for all depths d (up to your
own maximum depth), and compare a to the best possible
action at each depth. Unfortunately, this is computationally
prohibitive. Instead, given a single truncated game tree T d,
we show how to compute the best possible action (and value)
at all depths d′ ≤ d in a single bottom-up pass over T d. This
algorithm allows us to construct the set of rational depths
with negligible overhead, since T̃ d can be reused from the
player’s original MCTS computation.

To start, consider the usual bottom-up approach to com-
puting the single best path to a leaf node in T d. Each node
takes the best value over its children, adds its own reward,
and passes the result to its parent. The root of the tree then
contains the best value over all possible paths. A simple
modification allows us to return the best value for all depths
in the tree. In particular, each node now maintains a list of the
best value at all depths in the subtree below it. In the bottom-
up pass, leaf nodes just return their value as before, but a
node with children computes an element-wise maximum over
the lists of its children, adds its own reward to every entry
in the result, then inserts its own reward as the list head.

Next, to compute the set of rational depths, player i
first computes the best value at all depths for all possible
actions that player j could have taken in the previous turn;
comparing the value of action a at each depth with the best
possible value at each depth yields the set of depths at which
taking the action a would have been rational.

Finally, let player i’s depth bound be d. Then player i
maintains a vector of d+ 1 counts, one for each depth less

Fig. 1. The initial state for the Wall of Fire task.

than or equal to its own depth. This vector is initialized
to all zeros, except for the player’s own depth, which is
initialized to a parameter α > 0; this allows the player to
play at least the first turn with its full capabilities, where α
controls the strength of the player’s belief in the initialization.
To update the prior, denote the set of rational depths as
D = {d1, d2, ..., dn}. For each depth di ∈ D, we increment
the entry at depth di by 1/n. If no depths are found to be
rational, then we increment the entry at the maximum depth
d by 1; this reflects player i’s belief that player j has greater
capability (since by assumption, player j is playing rationally
at some depth). The depth prior is then the normalized
version of this vector.

V. EXPERIMENTAL RESULTS

We implemented CA-MCTS with the popular UCT variant
(henceforth, CA-UCT), and compared its performance to
vanilla UCT on two cooperative navigation tasks. Each task
consists of two players that alternate taking actions. One
player is an expert, with a deeper search depth, and the
other player is a novice, with a shallower search depth.
The agents are otherwise identical (i.e., have the same
action space, share the same reward function, use the same
UCT hyperparameters, and have complete knowledge of the
environment as well as the actions taken by the other agent).
All results are taken from the median of 5 runs.

A. Wall of Fire

In the Wall of Fire task, the two players take turns
controlling a single avatar on a two-dimensional board. The
available actions at each step are to move the avatar in one
of the four cardinal directions (up, down, left, right), subject
to the boundaries of the board. After each move, the players
collect a reward based on their position on the board: every
time step ending on a red “fire” tile yields a penalty of
-2, whereas every time step ending on a yellow “coin” tile
yields a reward of +100. The coin tiles are also consumable,
meaning that they can only be collected once; the fire tiles
are permanent. We run each episode for 20 turns (10 per
player). Figure 1 displays the initial state of the players and
the board. Table I reports the performance of various team
compositions on the task.

Clearly, the optimal strategy is to traverse the wall of fire
in 5 steps, and spend the remaining steps collecting coins.
Indeed, an expert with a search depth of 20 is able to reliably
perform this task optimally (Expert + Expert, Table I). We



Team Composition Reward

Novice + Novice 0
Expert + Expert 1490

Expert + Novice -20
CA-Expert + Novice -2

TABLE I
PERFORMANCE ON WALL OF FIRE TASK FOR DIFFERENT TEAMS.

Fig. 2. The initial state for the Narrow Tunnel task. In this case, the novice
controls the blue avatar and the expert controls the red avatar.

also introduce a novice player with a search depth of 2, which
is insufficient to “see” past the wall of fire; the novice player
thus spends its in entire time exploring the neutral tiles on
the left side of the wall of fire, and ends every episode with
a reward of 0 (Novice + Novice, Table I).

However, when we allow the expert and the novice to take
turns controlling the avatar, we find that the expert (using
vanilla UCT) takes a single step into the wall of fire (thus
collecting a penalty of -2), then the novice takes a step back
out; this loop often repeats for the entirety of the episode,
leading to a large negative reward (Expert + Novice, Table I).

In contrast, an expert running the CA-UCT algorithm is
able to infer from a single interaction that the novice is
unable to see past the wall of fire, and only collects the
penalty once before cooperating with the novice to “explore”
the neutral left side of the board for the remainder of the
episode (CA-Expert + Novice, Table I).

B. Narrow Tunnel

In the Narrow Tunnel task, two players each control an
avatar on a two-dimensional board. The action space contains
an additional choice to not move (up, down, left, right, no-
op). The red coins are worth +30 if collected by the red
avatar, and the blue coins are worth +1 if collected by
by the blue avatar; the coins are worthless otherwise, and
disappear regardless of which avatar collects them. We run
each episode for 20 turns. Figure 2 displays the initial state
of the players and the board. Table II reports the performance
of various team compositions on the task.

Due to the uneven rewards, the optimal strategy is for
the blue avatar to yield the narrow tunnel to the red avatar,
allowing it to collect the more valuable red coins—a strategy
which the expert (with search depth 30) has no trouble
following (Expert + Expert, Table II). However, because the
red avatar is 8 steps away from the red coins and the blue
avatar is only 6 steps away from the blue coins, the novice
(with search depth 10) is unable to devise this strategy,

Blue Avatar Red Avatar Reward

Novice Novice 4
Expert Expert 90

Novice Expert 0
Novice CA-Expert 4

TABLE II
PERFORMANCE ON NARROW TUNNEL TASK FOR DIFFERENT TEAMS.

and instead sends the blue avatar through the narrow tunnel
(Novice + Novice, Table II).

We next consider a heterogeneous team of an expert
playing the red avatar, and a novice playing the blue avatar.
When the expert runs the vanilla UCT algorithm, the two
players meet in a deadlock in the center of the tunnel, neither
willing to yield to the other (Novice + Expert, Table II).
However, an expert running the CA-UCT algorithm takes
only 1 turn of deadlock to infer that the novice’s depth is
insufficient to use the optimal strategy, and hence yields the
tunnel to the blue agent (Novice + CA-Expert, Table II).

C. Discussion

Our experimental results highlight several interesting phe-
nomena. First, performance does not increase monotonically
as agents get more powerful. In particular, we show that
increasing the computational capacity of an agent can lead
to worse behavior, e.g., in the Wall of Fire task, a team
of novices collects no rewards, but upgrading one of the
novices to an expert yields a strictly worse outcome of -20.
Second, this behavior occurs even though the tasks are in a
ideal setting of full information with complete cooperation.
In the context of human-robot cooperation, many prior works
in the robot learning literature identify challenges arising
from value misalignment, where the robot needs to learn
the true reward function of the human from interaction [12].
Conversely, this works suggests that true reward function
of humans may be subject to additional constraints which
cannot be captured by a reward function in the MDP, and
attempting to learn under the Markov assumption can lead
to poor outcomes.

VI. CONCLUSION

In this work, we study the task of cooperation between a
heterogeneous team of agents with differing computational
capacities. The key observation is that agents that do not
account for the mismatch in computational capacities may
arrive at conflicting plans. We study an instance of this
problem in agents that use a truncated version of MCTS
for infinite-horizon interactions, and show that empirically
such conflicting behavior does occur despite having full
information and sharing rewards. To address this problem,
we introduce the Capacity-Aware Monte Carlo tree search
(CA-MCTS) algorithm, which explicitly incorporates a belief
over the other agent’s depth bound during planning. Our ex-
periments indicate that CA-MCTS leads to better cooperation
in heterogeneous teams when compared to vanilla MCTS.



REFERENCES

[1] C. F. Camerer, T.-H. Ho, and J.-K. Chong, “A cognitive hierarchy
model of games,” The Quarterly Journal of Economics, vol. 119, no. 3,
pp. 861–898, 2004.

[2] G. Devetag and M. Warglien, “Games and phone numbers: Do
short-term memory bounds affect strategic behavior?” Journal of
Economic Psychology, vol. 24, no. 2, pp. 189–202, 2003, the
Economic Psychology of Herbert A. Simon. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167487002002027

[3] G. Campitelli and F. Gobet, “Adaptive expert decision making: Skilled
chess players search more and deeper,” ICGA Journal, vol. 27, no. 4,
pp. 209–216, 2004.

[4] P. Chassy and F. Gobet, “Measuring chess experts’ single-use sequence
knowledge: an archival study of departure from ‘theoretical’openings,”
PLoS One, vol. 6, no. 11, p. e26692, 2011.

[5] A. Torreno, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative
multi-agent planning: A survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–32, 2017.

[6] V. R. Desaraju and J. P. How, “Decentralized path planning for
multi-agent teams in complex environments using rapidly-exploring
random trees,” in 2011 IEEE International Conference on Robotics
and Automation. IEEE, 2011, pp. 4956–4961.

[7] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Advances in neural information processing systems,
vol. 30, 2017.

[8] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[10] R. Gibbons, “Incentives in organizations,” Journal of economic per-
spectives, vol. 12, no. 4, pp. 115–132, 1998.

[11] A. Y. Ng, S. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[12] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Cooper-
ative inverse reinforcement learning,” Advances in neural information
processing systems, vol. 29, 2016.

[13] S. J. Russell and E. Wefald, Do the right thing: studies in limited
rationality. MIT press, 1991.

[14] H. A. Simon, Models of bounded rationality: Empirically grounded
economic reason. MIT press, 1997, vol. 3.

[15] F. Fotiadis and K. G. Vamvoudakis, “Recursive reasoning for bounded
rationality in multi-agent non-equilibrium play learning systems,”
in 2021 IEEE Conference on Control Technology and Applications
(CCTA), 2021, pp. 741–746.

[16] Y. Wen, Y. Yang, R. Luo, and J. Wang, “Modelling bounded rationality
in multi-agent interactions by generalized recursive reasoning,” arXiv
preprint arXiv:1901.09216, 2019.

[17] S. Nikolaidis, A. Kuznetsov, D. Hsu, and S. Srinivasa, “Formalizing
human-robot mutual adaptation: A bounded memory model,” in 2016
11th ACM/IEEE International Conference on Human-Robot Interac-
tion (HRI). IEEE, 2016, pp. 75–82.

[18] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[19] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[21] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[22] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in European conference on machine learning. Springer, 2006, pp.
282–293.

[23] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp.
235–256, 2002.


