
A Game-theoretic Utility Network for Cooperative Multi-Agent
Decisions in Adversarial Environments

Qin Yang Ramviyas Parasuraman

Abstract—Underlying relationships among multi-agent systems
(MAS) in hazardous scenarios can be represented as Game-
theoretic models. This paper proposes a new network-based
model called Game-theoretic Utility Tree (GUT), which de-
composes high-level strategies into executable low-level actions
for cooperative MAS decisions in adversarial environments. It
combines a new payoff measure based on agent needs for real-
time strategy games. We demonstrated the applicability of the
GUT using the Robotarium platform, which is a simulator-
hardware testbed for verifying multi-robot system algorithms.
The performances verified the effectiveness of the GUT in the real
robot application and validated that the GUT could effectively
organize MAS cooperation strategies, helping the group with
fewer advantages achieve higher performance.

I. INTRODUCTION

Natural systems have been the key inspirations in the
design, study, and analysis of Multi-Agent Systems (MAS) [1].
Distributed Intelligence refers to systems of entities working
together to reason, plan, solve problems, think abstractly,
comprehend ideas and language, and learn [2]. Especially
for cooperative MAS, the individual is aware of other group
members, and actively shares and integrates its needs, goals,
actions, plans, and strategies to achieve a common goal and
benefit the entire group [3]. It can maximize global system
utility and guarantee sustainable development for each group
member [4].

Systems with a wide variety of agent heterogeneity and
communication abilities can be studied, and collaborative and
adversarial issues also can be combined in a real-time situ-
ation [5]. Considering working in adversarial environments,
opponents can prevent MAS from achieving global and local
tasks, even impair individual or system necessary capabilities
or normal functions [6]. Combining multi-agent cooperative
decision-making and robotics disciplines, researchers devel-
oped the Adversarial Robotics focusing on autonomous agents
operating in adversarial environments. [7], [8]. From the
robot’s1 needs [9], [10] and motivations perspective, we can
classify an Adversary into two general categories: Intentional
(such as enemy or intelligent opponent agent, which con-
sciously and actively impairs the MAS needs and capabilities)
and Unintentional (like obstacles and weather, which unaware
and passively threaten MAS abilities) adversary.

MAS research domains focus on solving path planning
problems for avoiding static or dynamical obstacles [7] and
formation control [11], [8] from the unintentional adversary

* The authors are with the Heterogeneous Robotics (HeRo) Lab, Depart-
ment of Computer Science, University of Georgia, Athens, GA 30602, USA.

Email: {qy03103,ramviyas}@uga.edu.
1Here, we use the terms agent and robot interchangeably.

Fig. 1. Illustration of the Explore Game scenario where the Aliens (opponent
agents - peer adversaries) block the paths to a target of the Explorers
(protagonist agents).

perspective. For intentional adversaries, the ”pursuit domain”
[12], [13] primarily deals with how to guide one or a group
of pursuers to catch one or a group of moving evaders [14],
[15]. Foundations for normal-form team games and extensive-
form adversarial team games are provided in [16] and [17],
respectively. Nevertheless, it is more realistic and practical for
MAS to organize more complex relationships and behaviors,
achieving given tasks with higher success probability and
lower costs in adversarial environments.

This paper proposes a new hierarchical network model
called Game-theoretic Utility Tree (GUT) to achieve MAS co-
operative decision-making in adversarial environments. GUT
consists of Game-theoretic Utility Computation Units (Fig. 2)
distributed in multiple levels by decomposing strategies,
thereby significantly lowering the game-theoretic operations
in strategy space dimension. It combines the core principles
of Game Theory [18] and Utility Theory [19], [20]. Further
more, we present a game of Explorers vs. Aliens (referred as
”Explore Game” - Fig. 1) to evaluate the MAS performance
from the perspective of balancing the success probability
of achieving tasks and system costs by organizing involved
individuals’ relationships and suitable groups’ strategies in
adversarial environments.

We demonstrate the effectiveness of the GUT against the
random and greedy approaches in the Explore Game through
the Robotarium [21] hardware-simulator multiagent testbed.
The results indicated that GUT could organize more complex
relationships among MAS cooperation. It helps the group
achieving challenging tasks with lower costs and higher win-
ning probability.

The proposed approach can be applied to other Real-Time



Strategy (RTS) tasks, which involve agents decomposing the
high-level strategies into primitive actions or group atomic
operations [9] in the specific mission, such as robot soccer,
multi-robot urban search and rescue (USAR) missions, etc.

II. BACKGROUND AND PRELIMINARIES

This section provides a brief background to the Game theory
principles used in this paper. Then, we present the agent
needs hierarchy based on which the payoff utilities in our
game-theoretic approach are designed. Further, we define an
adversary agent based on the agent’s needs expectations and
discuss the Explore Game problem.

A. Game Theory Basics
Game Theory is the science of strategy, which provides

a theoretical framework to conceive social situations among
competing players and produce optimal decision-making of
independent and competing actors in a strategic setting [18].

In a non-cooperative game, players compete individually
and try to raise their profits alone. Especially in the zero-sum
games, their total value is constant and will not decrease or
increase, which means that one player’s profit is associated
with another loss. In contrast, if different players form several
coalitions trying to take advantage of their coalition, that game
will be cooperative [22]. In this paper, we focus on non-
cooperative games, where the ally and enemy agent teams do
not cooperate. But, the ally agents will cooperate within the
team to decide on a common team strategy by sharing their
perception data.

If a player chooses to take one action with probability 100%,
then the player is playing a pure strategy. For the game’s
solutions, if players adopt a Pure Strategy, it will provide
maximum profit or the best outcome. Therefore, it is regarded
as the best strategy for every player of the game. On the other
hand, in a Mixed Strategy, players execute different strategies
with the possible outcome through a probability distribution
over several actions. In the game theory, the Normal Form
describes a game through a matrix, where each player has
a set of (mixed) strategies. They select a strategy and play
their selections simultaneously. Furthermore, the selection of
strategies results in payoff or utility for each player, and its
goal in a game is to maximize utility.

Furthermore, Nash Existence Theorem is a theoretical
framework, which guarantees the existence of a set of mixed
strategies for a finite, non-cooperative game of two or more
players in which no player can improve its payoff by uni-
laterally changing strategy. It guarantees that every game
has at least one Nash equilibrium [23], which means that
every finite game has a Pure Strategy Nash Equilibrium or
a Mixed Strategy Nash Equilibrium. Moreover, in any normal-
form game with constant number of strategies per player, an
ϵ-approximate Nash Equilibrium can be computed in time
O(nlog n/ϵ2), where n is the description size of the game [24].

B. Agent Needs Hierarchy
In Agent Needs Hierarchy [9], the abstract needs of an agent

for a given task are prioritized and distributed into multiple

levels, each of them preconditioned on their lower levels. At
each level, we express the needs as an expectation over its
distribution of the factors/features corresponding to that level.

Here, we define five different levels of agent needs similar
to Maslow’s human needs pyramid. The lowest (first) level is
the safety features of the agent (e.g., features such as collision
detection, fault detection, etc., that assure safety to the agent,
human, and other friendly agents in the environment). The
safety needs (Eq. (1)) can be calculated through its safety
feature’s value and corresponding safety feature’s probability
based on the current state of the agent. After satisfying safety
needs, the agent considers its basic needs (Eq. (2)), which
includes features such as energy levels, data communication
levels that help maintain the basic operations of that agent.
Only after fitting the safety and basic needs, an agent can
consider its capability needs (Eq. (3)), which are composed
of features such as its health level, computing (e.g., storage,
performance), physical functionalities (e.g., resources, manip-
ulation), etc.

At the next higher level, the agent can identify its teaming
needs (Eq. (4)) that accounts the contributions of this agent to
its team through several factors (e.g., heterogeneity, trust [25],
actions) that the team needs so that they can form a reliable
and robust team to successfully perform a given mission.

Ultimately, at the highest level, the agent learns some
skills/features to improve its capabilities and performance in
achieving a given task. For instance, an agent may use RL to
learn its policy features (e.g., Q table or reward function) using
which it can execute appropriate actions based on the current
state. Such learning features are accounted into its learning
needs expectation (Eq. (5)). The expectation of agent needs at
each level are given below:

Safety Needs : Nsj =

sj∑
i=1

Si · P(Si|Xj , T ); (1)

Basic Needs : Nbj =

bj∑
i=1

Bi · P(Bi|Xj , T,Nsj ); (2)

Capability Needs : Ncj =

cj∑
i=1

Ci · P(Ci|Xj , T,Nbj ); (3)

Teaming Needs : Ntj =

tj∑
i=1

Ti · P(Ti|Xj , T,Ncj ); (4)

Learning Needs : Nlj =

lj∑
i=1

Li · P(Li|Xj , T,Ntj ); (5)

Here, Xj = {Pj , Cj} ∈ Ψ is the combined state of the agent
j with Pj being the perceived information by that agent and
Cj representing the communicated data from other agents. T
is the assigned task (goal or objective). Si, Bi, Ci, Ti, and Li

are the utility values of corresponding feature/factor i in the
corresponding levels - Safety, Basic, Capability, Teaming, and
Learning, respectively. sj , bj , cj , tj , and lj are the sizes of
agent j’s feature space on the respective levels of needs.



The collective need of an agent j is expressed as the union
of needs at all the levels in the needs hierarchy as in Eq. (6).

Nj = Nsj ∪Nbj ∪Ncj ∪Ntj ∪Nlj (6)

The set of agent needs in a multiagent system can be regarded
as a kind of motivation or requirements for cooperation
between agents to achieve a specific group-level task.

C. Adversarial Agent Definition

A friendly (ally) agent can contribute to the team, decreasing
the individual needs of the team members, while an adversary
can harm the team, increasing the overall needs of every team
member. Based on this concept, we define an agent R1 as
adversary or friendly with respect to an agent R2 as follows.
For a certain state ψ ∈ Ψ, the agent R1 is fulfilling a task T .
Supposing the current needs of R1 is NR1

(ψ, T ). Considering
another agent R2 entering the R1’s observation space, the
needs of R1 can be represented as NR1(ψ ∪ R2, T ) under
the presence of the agent R2. The following equations define
the relationship between R1 and R2:

NR1(ψ ∪R2, T )−NR1(ψ, T ) > 0; (Adversary) (7)
NR1(ψ ∪R2, T )−NR1(ψ, T ) < 0; (Friendly) (8)
NR1(ψ ∪R2, T )−NR1(ψ, T ) = 0. (Neutral) (9)

Definition 1 (Adversary): If the needs of R1 increase when
R2 is present, then R1 regards R2 as an Adversary (Eq. (7)).

Definition 2 (Friendly): If the needs of R1 decrease when
R2 is present, then R1 sees R2 as a friendly agent (Eq. (8)).

Definition 3 (Neutral): If the needs of R1 do not change
because of R2’s presence, then R2 is neutral to R1 (Eq. (9)).

Note, an obstacle is still an (unintentional) adversary as per
this definition, since obstacles will increase the needs of an
agent in terms of using more energy to avoid collision risk.

D. Explore Game

To simplify theoretical analysis and numerical calculations,
we consider an exemplar problem domain called Explore
Game, which is described below. In Explore Game, α number
of agents (called Explorers hereafter) are performing a task
T , which is to explore an environment and collect rewards
by reaching treasure locations. Supposing there are β number
of (intentional) adversaries (called Aliens hereafter). Explorer
can choose a strategy se from its strategy space Se and aliens
can choose a strategy sa from its strategy space Sa. We assume
both these strategy spaces are known to the Explorer agents.
We also assume that the Aliens do not have a cooperation
strategy, and each Alien acts independently on its own.

Let Ci represent the system costs of explorer i to perform
this task and W denote the success probability (win rate) of the
explorer team under the presence of alien(s). We model this
as a bi-objective optimization problem (Eq. (10)) of finding
an optimal collective team strategy for the explorers s∗e ∈ Se

under the premise of maximizing success W (against aliens)

while minimizing costs C using the collective needs of the
explorers Ne =

∑α
i=1Ni.

s∗e = argmax
se∈Se

[W (se|T, Sa, Ne)−
α∑

i=1

Ci(si|T, se, Ni)] (10)

Without an adversary, the problem shrinks to a typical explo-
ration problem (optimizing C alone) [26], and without a task
T , the problem shrinks to a typical non-cooperative zero-sum
game problem (optimizing W alone) [18].

The proposed approach can be applied to other Real-Time
Strategy (RTS) games, such as air combat and StarCarft, and
cooperative multiagent/robot mission, like urban search and
rescue (USAR) [10], pursuit-evasion game [27] and robot
soccer [28]. These domains involve both ally agents and
opponent agents (intentional adversaries), and the nature of the
strategies the agents or the team can take can allow dissolving
the high-level group strategies into primitive or atomic actions.

For instance, in Star Craft [29], the strategies a player can
make can be composed of the following primitives: What to
do? (e.g., Build, Move, Attack, etc.); Who to perform? (which
player to execute this action or which opponent to attach,
etc.); Where? (physical location or point of interest); When?
(immediately or delayed or how long); etc.

Similarly, in robot soccer competitions [28], a player can
choose a composition of low-level sub-strategies such as an
action (what to do? - kicking, passing, or shooting a ball,
etc.) combined with where or who (ball location or player
destination, for examples). As we can see, a final strategy the
team can take is a composition of these primitives. Using GUT,
we can solve for atomic actions at the level of primitives and
hierarchically merge them to find the best high-level strategies
for the ally team against enemy agents.

III. APPROACH

Fig. 2 outlines the structure of the Game-theoretic Utility
Tree (GUT) and its computation units distributed in each level.
First, the game-theoretic module (Fig. 2 (a)) calculates the nash
equilibrium based on the utility values (u11, ..., unm) of corre-
sponding situations, (p1, ..., pnm) presenting the probability of
each situation. Then, through the conditional probability(CP)
module (Fig. 2 (b)), the CP of each situation can be described
as (pi1, ..., pinm), where pinm = (pnm|pi−1), i, n,m ∈ Z+.
Here, pi−1 and Si present the probability of previous situation
and current Game-theoretic state; sa, sb and n, m represent
their strategy space and size on both sides, respectively. In this
section, we explain the decision-making process in GUT and
describe the specific implementation in ”Explore Game”.

A. GUT-based Decision-Making

For intentional adversaries, agents first decompose the spe-
cific goal into several independent subtasks based on the
same category of individual low-level behaviors or atomic
operations (basic group strategies). Then, through calculating
various Nash equilibrium based on different situation utility
values in each level’s Game-theoretic Utility Computation



Fig. 2. General Individual Agent’s GUT

Units, agents can get optimal or sub-optimal strategy sets tack-
ling the current status according to Nash Existence Theorem.
So GUT also can be regarded as a Task-Oriented Decision
Tree. We formalize it as Theorem 1.

Theorem 1 (GUT Decision): Let A and B represent
the groups of Explorers and Aliens. The simultaneous
normal-form game representing the non-cooperative
game between explorers and aliens is a structure
G=⟨{A,B}, {Se, Sa}, {NtA , NcB}⟩. Supposing the GUT
at the explorer group has w levels. Gi⟨{A,B},{Se, Sa},NtAi

⟩,
i ∈ w (Fig. 2.GUT) describes corresponding zero-sum game
in each level. Then, A has at least one dominant strategy
series (s1, s2, ... , sw) in GUT.

B. Complexity Analysis

Like the master theorem [30], supposing each sub-game has
the same size (strategies space), the GUT can be described
as the running time of an approach that recursively divides a
game G(ξ) of size ξ into a sub-games, each of size ξ/b, a, b ∈
Z+. If G(ξ) is the one-level game, the complexity obeys [24].
Then G(ξ) has the following asymptotic bounds:

ξlog
a
b ≤ G(ξ) ≤ ξlog ξ/ϵ2 , ϵ ∈ (0, 1). (11)

It runs in O(logξb ) time on searching the specific strategy set,
showing the scalability in the strategies space (game size). The
scalability in terms of the number of agents depends on the
particular communication graph in information sharing.

The Utility Function design is critical to determine whether
or not an individual can calculate reasonable tactics. However,

to simplify the computation process, we can adopt the winning
probability (W ), basic needs (energy cost - E(e)), and safety
needs (HP (health power) cost - E(hp)) representing the
expected utility values for corresponding levels.

In the whole process, explorers present a kind of global
behaviors performing Collective Rationality and caring about
Group interest. In contrast, aliens show Self-interest and do not
cooperate for relative definitions). For explorers, their Teaming
Needs (expected utilities) is under the premise of maximizing
the chance of finding the treasure to minimize HP cost based
on fitting their low-level needs, such as safety and basic needs.

IV. EXPERIMENTS

To demonstrate the GUT on the multi-robot applications,
we implement our method in the Robotarium [21] platform, a
remote-accessible multi-robot experiment testbed that supports
controlling up to 20 robots simultaneously on a 3.2m × 2.0m
large rectangular area. Each robot has the dimensions 0.11 m
× 0.1 m × 0.07 m in the testbed.

In the Robotarium experiments, we consider three different
propositions between the number of explorers and aliens in
the Explore Game domain. They are one explorer vs. one alien
(Fig. 3), one explorer vs. two aliens (Fig. 4), and four explorers
vs. three aliens (Fig. 5). To highlight the difference between
each experiment, we do not consider any obstacles in the first
two scenarios. The third scenario involves (simulated) obstacle
regions and two different adversarial regions (Encounters).

Our Robotarium experiments consider four different strate-
gies (Set Se) for the explorer team: attacking and changing
direction, attacking and changing speed, defending and chang-
ing direction, and defending and changing speed. We decom-
pose this strategy set into two levels for GUT implementation
in Robotarium: Level 1 considers deciding attack or defend
(Table I); and Level 2 considers changing direction or speed
(Table II) for a single explorer game while it considers triangle
or diamond formation shape (Table III) for a multiple explorer
game. Two different tactics payoff matrices are designed in
Level 2 to differentiate the strategies between single-agent and
multiagent cooperation.

We consider the Winning Utility following Bernoulli Dis-
tribution to represent individual high-level expected utility
(teaming & cooperation needs) in the first level (Eq. (12)).
And we assume that the second level’s utility is described
as the relative Expected Energy Cost Eq. (13) following
Normal Distribution. Here, n and m represent the number
of Explorers and Aliens respectively; te and ta represent
corresponding average energy levels of both sides; d represents
the group average distance between two opponents; a and b
are corresponding coefficients.

W (te, ta, n,m) = a(
te
ta
)

m
n ; (12)

E(n,m, d) = b0 + b1

∫ +∞

−∞
(n−m)x

1√
2π
e−

(x−d)2

2 dx (13)

We compare our GUT approach with two different baseline
approaches: 1) Random value selection approach (Eq. (14)),



Fig. 3. 1 explorer vs 1 alien Fig. 4. 1 explorer vs 2 aliens Fig. 5. 4 explorers vs 3 aliens

(a) Explorer Average Energy Cost (b) Explorer Average HP Cost (c) Explorer Time Cost

Fig. 6. The Performance Results in the Robotarium Experiments with Different Proportion of the Explore Game.

which chooses a strategy from a set Se by maximizing a re-
ward function with two random variables; 2) Greedy algorithm
[31] (Eq. (15)), which maximizes the combined utilities of win
rate and HP metric together (equivalent to a one-level GUT).

s∗e = argmax
i∈Se

[100− c1 · si1 · d− c2 · si2 · na · uhp] (14)

s∗e = argmax
i∈Se

[Wi ·HPi] (15)

Here, si1 and si2 represent the energy-dependent and health-
dependent random reward values of strategy i, respectively.
They follow the Gaussian distributions with different expec-
tations. d is the distance between explorer and goal point. na
and uhp are the number of active aliens and their average
unit attacking damage cost. c1 and c2 are the corresponding
coefficients. Wi and HPi are the winning and HP utility values
of strategy i.

TABLE I
LEVEL 1 (ATTACK/DEFEND) TACTICS PAYOFF MATRIX.

AT

Utility ET
Attack Defend

Attack WAA WDA

Defend WAD WDD

ET - Explorer Tactics
AT - Alien Tactics

We implement each case with real robots in the Robotarium
and conduct ten simulation trials (rounds) for each scenario
in the Robotarium simulator. We initialize each robot in the
same group (explorer or adversary) with equal energy (battery)
levels and health points (HP); for example, explorer with 100

TABLE II
LEVEL 2 PAYOFF MATRIX FOR

SINGLE EXPLORER.

AT

Utility ET
∆Speed ∆Direction

Follow HPSF HPDF

Retreat HPSR HPDR

TABLE III
LEVEL 2 PAYOFF MATRIX FOR

MULTIPLE EXPLORERS.

AT

Utility ET
Triangle Diamond

Follow HPTF HPDF

Retreat HPTR HPDR

points and alien with 150 points in Energy and HP correspond-
ingly. Also, we assumed that every moving step and attack
damage cost 0.1% of energy and 0.3% of HP, respectively.
Other settings are similar to the previous experiments. The
video demonstrates the simulation and hardware application
of corresponding experiments in Robotarium is available at
https://youtu.be/eBJayhZQ6X4.

Results and Discussion: Fig. 6 presents the results of the
Robotarium experiments. The average costs of energy, HP,
and the time taken to complete the mission of explorer are
shown in Figs. 6(a), 6(b), and 6(c), respectively. The data
shows that in the single explorer cases (scenarios 1e vs. 1a
and 1e vs. 2a), both GUT and greedy stand out compared to
the random approach, but the GUT is not significantly better
than the greedy approach consistently in all the performance
metrics. We attribute this to the fact that GUT uses only two
levels of action decomposition and therefore does not offer
significant advantages compared to the one-level GUT/greedy
approach in this simple scenario. However, for the multiple
explorer case (scenario 4e vs. 3a), the GUT shows superior
performance over other methods in all metrics, demonstrating
that the GUT can help MAS organize their behaviors and select

https://youtu.be/eBJayhZQ6X4


TABLE IV
PERFORMANCE RESULTS IN ROBOTARIUM EXPERIMENTS.

PRD
APP Winning Rate Lost Explorers Per Round/win

Random Greedy GUT Random Greedy GUT
1e vs 1a 100% 100% 100% - - -
1e vs 2a 90% 100% 100% 0.1 - -
4e vs 3a 50% 90% 100% 2.8 2.0 -

a suitable strategy adapting to complex situations. We can get
a similar observation from the perspective of the winning rate
and the average number of explorers lost from the Table. IV.

Generally speaking, by demonstrating the Explore domain
in the Robotarium, we demonstrated that the GUT could
help the intelligent agent (robot) rationally analyze differ-
ent situations in real-time, effectively decompose the high-
level strategy into low-level tactics, and reasonably organize
groups’ behaviors to adapt to the current scenario. From the
system perspective, through applying the GUT, the group
presents more complex strategies or behaviors to solve the
dynamic changing issues and optimize or sub-optimize the
group utilities in MAS cooperation. From the individual agent
perspective, GUT reduces the agent’s costs and guarantees
sustainable development for each group member, much like
human society.

V. CONCLUSION AND FUTURE WORK

We introduce a new network model called Game-theoretic
Utility Tree (GUT), mimicking the multi-agent decision-
making process for cooperation working in adversarial en-
vironments. We verified the effectiveness of the GUT in
the real robot application through the implementation of the
Explore Game on the Robotarium hardware-simulator multi-
agent testbed and compared it with the random and greedy
approaches in three scenarios.

For future work, it will be essential to improve GUT
from different perspectives, such as optimizing GUT structure
through learning from different scenarios, designing appropri-
ate utility functions, building suitable predictive models, and
estimating reasonable parameters fitting the specific scenario.

REFERENCES

[1] M. Wooldridge, An introduction to multiagent systems. John Wiley &
Sons, 2009.

[2] L. E. Parker, “Distributed intelligence: Overview of the field and its
application in multi-robot systems.” in AAAI Fall Symposium: Regarding
the Intelligence in Distributed Intelligent Systems, 2007, pp. 1–6.

[3] Q. Yang, Z. Luo, W. Song, and R. Parasuraman, “Self-Reactive Planning
of Multi-Robots with Dynamic Task Assignments,” in IEEE Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS) 2019,
2019, extended Abstract.

[4] J. Shen, X. Zhang, and V. Lesser, “Degree of local cooperation and its
implication on global utility,” in Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume
2. IEEE Computer Society, 2004, pp. 546–553.

[5] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383,
2000.

[6] M. Jun and R. D’Andrea, “Path planning for unmanned aerial vehicles in
uncertain and adversarial environments,” in Cooperative control: models,
applications and algorithms. Springer, 2003, pp. 95–110.

[7] N. Agmon, G. A. Kaminka, and S. Kraus, “Multi-robot adversarial
patrolling: facing a full-knowledge opponent,” Journal of Artificial
Intelligence Research, vol. 42, pp. 887–916, 2011.

[8] R. Yehoshua and N. Agmon, “Adversarial modeling in the robotic cov-
erage problem,” in Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2015, pp. 891–899.

[9] Q. Yang and R. Parasuraman, “Hierarchical needs based self-adaptive
framework for cooperative multi-robot system,” in 2020 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2020, pp. 2991–2998.

[10] ——, “Needs-driven heterogeneous multi-robot cooperation in rescue
missions,” in IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR). IEEE, 2020, pp. 252–259.

[11] Y. Shapira and N. Agmon, “Path planning for optimizing survivability of
multi-robot formation in adversarial environments,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 4544–4549.

[12] M. Benda, V. Jagannathan, and R. Dodhiawala, “On optimal cooperation
of knowledge sources - an empirical investigation,” Boeing Advanced
Technology Center, Boeing Computing Services, Seattle, WA, USA,
Tech. Rep. BCS–G2010–28, July 1986.

[13] P. Cheng, “A short survey on pursuit-evasion games,” Department of
Computer Science, University of Illinois at Urbana-Champaign, 2003.

[14] W. L. Scott III, “Optimal evasive strategies for groups of interacting
agents with motion constraints,” Ph.D. dissertation, PhD thesis, Prince-
ton University, 2017.

[15] V. R. Makkapati and P. Tsiotras, “Optimal evading strategies and task
allocation in multi-player pursuit–evasion problems,” Dynamic Games
and Applications, pp. 1–20, 2019.

[16] B. von Stengel and D. Koller, “Team-maxmin equilibria,” Games and
Economic Behavior, vol. 21, no. 1-2, pp. 309–321, 1997.

[17] A. Celli and N. Gatti, “Computational results for extensive-form adver-
sarial team games,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[18] R. B. Myerson, Game theory. Harvard university press, 2013.
[19] P. C. Fishburn, “Utility theory for decision making,” Research analysis

corp McLean VA, Tech. Rep., 1970.
[20] M. J. Kochenderfer, Decision making under uncertainty: theory and

application. MIT press, 2015.
[21] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and

M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 1699–1706.

[22] M. K. Sohrabi and H. Azgomi, “A survey on the combined use of
optimization methods and game theory,” Archives of Computational
Methods in Engineering, vol. 27, no. 1, pp. 59–80, 2020.

[23] A. X. Jiang and K. Leyton-Brown, “A tutorial on the proof of the
existence of nash equilibria,” University of British Columbia Technical
Report TR-2007-25. pdf, vol. 14, 2009.

[24] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The com-
plexity of computing a nash equilibrium,” SIAM Journal on Computing,
vol. 39, no. 1, pp. 195–259, 2009.

[25] Q. Yang and R. Parasuraman, “How can robots trust each other? a rela-
tive needs entropy based trust assessment models,” in IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2021.

[26] J. Kim, “Multirobot exploration while building power-efficient sen-
sor networks in three dimensions,” IEEE transactions on cybernetics,
vol. 49, no. 7, pp. 2771–2778, 2018.

[27] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous robots, vol. 31, no. 4, p. 299, 2011.

[28] S. Nadarajah and K. Sundaraj, “A survey on team strategies in robot
soccer: team strategies and role description,” Artificial Intelligence
Review, vol. 40, no. 3, pp. 271–304, 2013.

[29] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[31] A. Vince, “A framework for the greedy algorithm,” Discrete Applied
Mathematics, vol. 121, no. 1-3, pp. 247–260, 2002.


	Introduction
	Background and Preliminaries
	Game Theory Basics
	Agent Needs Hierarchy
	Adversarial Agent Definition
	Explore Game

	Approach
	GUT-based Decision-Making
	Complexity Analysis

	Experiments
	Conclusion and Future Work
	References

