
Towards Reliable Benchmarking for Multi-Robot Planning
in Realistic, Cluttered and Complex Environments

Simon Schaefer1, Luigi Palmieri2, Lukas Heuer2, Niels van Duijkeren2,
Ruediger Dillmann1, Sven Koenig3, Alexander Kleiner2

Abstract— Multi-robot planning and coordination is a hard
task to solve particularly in cluttered and complex environ-
ments. Several methods exist for solving such task. Due to
the lack of adequate benchmarking tools, comparing these
approaches and judging their suitability for use in realistic
scenarios is hardly possible. To this end, in this work we
propose a novel benchmark toolchain that aims to close this gap.
Differently from the related works, our benchmark uses full-
stack multi-robot navigation systems in realistic 3D simulated
intralogistic and household environments. The usage of open-
source frameworks ROS2, Gazebo and RMF gives the user
the possibility to easily add novel robot platforms. The frame-
work provides easy-to-use and to-extend abstractions, common
metrics and interfaces to several well-known planning libraries
for multi-robot systems. With all these features our framework
successfully aids practitioners and researchers in comparing
multi-robot planning and coordination algorithms against the
state of the art.

I. INTRODUCTION

Planning and controlling a fleet of autonomous robots is
a challenging task, extremely hard in cluttered and dynamic
environments. Those systems are controlled by a complex
pipeline of components ranging from centralized path finders
to local distributed controllers, each suffering of their own
limitations. For instance, Multi-Agent Path Finding (MAPF)
and generalized task assignment problems are typically NP-
hard [8] [21], even for static environments. Many suboptimal
but faster algorithmic solutions have been proposed, choosing
the best solution for a certain application and a given set
selection criteria is difficult. This is particularly true for
fleets of robotic systems navigating in uncertain and dynamic
environments.

Several works on benchmarking have been presented re-
cently [4], [14], [18], [20]. However, they only consider a
sub-part of the control pipeline for fleets of robots, most
of them focus only on the path planning problem. With the
goal of enabling practitioners and researchers to select the
algorithms best suited for the needs of their robotic fleets, we
propose a multi-robot planning and coordination benchmark
toolchain that considers several planning and control layers

1S. Schaefer and R. Dillmann are with the Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany {mrp@simon-schaefer.net,
ruediger.dillmann@kit.edu}

2L. Palmieri, L. Heuer, N. van Duijkeren, A. Kleiner
are with Robert Bosch GmbH, Corporate Re-
search, Stuttgart, Germany {luigi.palmieri,
lukas.heuer, niels.vanduijkeren@de,
alexandre.kleiner}@de.bosch.com.

3S. Koenig is with the Computer Science Department of the University
of Southern California {skoenig@usc.edu}

This work was partly supported by the EU Horizon 2020 research and
innovation program under grant agreement No. 101017274 (DARKO).

Fig. 1: Several robots moving in the warehouse environment. The
individual laser scanners are visualized with blue rays.

(i.e., centralized and decentralized MAPF algorithms, single
robot navigation systems composed of global and local plan-
ners). The open-source framework includes a set of relevant
service-robot-oriented simulated environments, metrics, and
interfaces to available state-of-the-art planners and naviga-
tion systems. Its modular structure and versatile interfaces
facilitate its extension with further scenarios, algorithms, or
additional functionalities.

II. RELATED WORK

Benchmarking planning algorithms have received a lot
of attention in the last years [3], [4], [6], [9], [14], [16],
[18], [20]. Numerous benchmarks have been presented for
multi-robot planning and coordination [4], [14], [18], [20].
Stern et al. [18] discuss a benchmark called “Grid-based
MAPF” from MovingAI [19], [20]. As the name suggests,
different grid-based maps are supplied. Maps are always in
2D and each cell in a map is either blocked or not blocked
for an agent. For each of these maps, various scenarios
are provided. A scenario is a list of tasks, with a task
being a tuple of start and target cells for which a path
has to be found. The number of agents can be varied by
selecting the desired amount of tasks from the scenario, up
to several hundreds. For each task, an optimal path length
is provided. On some of these maps, the authors in [19],
[20] performed further analysis, allowing some estimation of
their respective difficulty. This benchmark assumes mainly
a perfect knowledge about the world, meanwhile our ap-
proach considers not only planning but also execution in
realistic simulated environments (thus considering possible



uncertainty). As opposed to the MovingAI maps, Asprilo
[4] offers a full simulation environment. This framework is
aimed specifically at intralogistic scenarios in warehouses.
The world is represented by a 2D grid, similar to the
MovingAI maps. Specifics of intralogistics are also mod-
elled: these include shelves containing specific amounts of
some product, which need to be brought to picking stations.
Therefore agents can perform additional actions such as
picking up and place down a shelf, instead of just moving
from location to location. While the constraints can be
defined using answer set programming (ASP), the robot
motion model is rather simple and the focus lies on abstract
representations of agents. Differently from our approach
higher level control of robots is neglected. Flatland [1], [14]
is a tool for benchmarking vehicle rescheduling problem
(VRSP), but it is not well suited for broader robotics domains
we have in mind. The environments they consider are 2D
grid with some restrictions on transitions between cells: e.g.,
there is no type of cells that allows entering and exiting
a cell from all directions, as one would expect for most
houshold or intralogistics robots. Contrarily to Flatland, our
approach considers more realistic robotic scenarios, in terms
of environment representation and modelling of the systems
to control.

Moreover in our approach, differently from all the others,
to reduce the gap between simulation and real-world per-
formances we make use of state-of-the-art-robot navigation
frameworks, namely: ROS2 [13] with Gazebo [10], Naviga-
tion 2 (Nav2) [12], and the Robotics Middleware Framework
(RMF) [15].

III. BENCHMARK IMPLEMENTATION

In this section, we explain key decision in designing the
benchmark suite and outline its architecture.

A. Software Architecture
Figure 2 provides an overview of MRP-Bench.
1) Starting Up: The workflow starts at the RMF Traffic

Editor which can be used to generate a Gazebo world file
with the intermediate step of a building.yaml description.
Together with the config.yaml, this provides the necessary
information for the Bench Manager Node to start the
benchmark: e.g. number of robots, random seed, start and
goals. Using the world file, Gazebo launches the simulated
3D environment. From this simulation, a binary costmap is
obtained using raytracing. The building.yaml also contains
a representation of the navigation graph, which denotes the
lanes that robots may move in. From this navigation graph,
another simpler occupancy grid is created. This occupancy
grid serves as an input for the path planning algorithm. Some
algorithms can also directly use the navigation graph.

2) Planning and Fleet Management: If the planning li-
brary has managed to create a schedule, the Bench Manager
computes and saves performance metrics from the planning,
converts the schedule into separate path requests for each
agent, and continues with sending the path requests to the
fleet server, which delivers them to the individual fleet
clients. The path is formed by several waypoints that will
be then given to the local navigation units.

3) Local Navigation: Together with a state publisher and
the fleet client, a full Nav2 stack is spawned for each robot.
We use the standard global and local planning algorithms
provided by the main repository. The benchmark user is free
to choose the most interesting planners for their scenarios.
The Nav2 stack interpolates a local path between the way-
points of the provided high level path, controls the robots
and in case of conflicts performs collision avoidance and
local recovery. Ground truth position from the simulator can
be used or the user can decide to run a SLAM algorithm.
Currently, the benchmark operates under the assumption that
robots progress from cell to cell with the same average speed.

4) Data Visualization and Collection: Robot poses are
displayed on a map using the RMF schedule visualizer.
While the agents are following their schedule, their states
(e.g. poses and velocities) are recorded and can be analyzed
later to gather additional metrics. Additionally the users can
record more data in rosbag format.

All custom, self-written nodes are implemented in
Python3. The architecture is heavily based on the ROS2
launch system.

IV. EVALUATION SUB-SYSTEM

In this section we detail the scenarios and the metrics
included in the benchmarking suite. Those can be further
extended by the user.

A. Scenarios

We provide three main environments, the office, the airport
and warehouse, see Figures 4 and 3. Their main properties
are shown in Table I. The warehouse and airport environ-
ments are the most complicated for planning algorithms, both
due to their size and their layout with high traffic main roads.

Property Office Warehouse Airport
Terminal

Width 21.53m 22.16m 282.22m
Height 12.05m 27.07m 64.35m
Nav. graph
Vertices 29 54 210
Edges 32 59 211
Occupancy grid
Cells total 1025 3009 105700
Cells passable 333 788 7645
Cells impassable 692 2221 98055

TABLE I: Environments key facts. Grid statistics at 0.4m grid
resolution and two-way roads.

B. Metrics

There are two sets of metrics. The first one are related
to planning performance and quality: success rate, planning
time, makespan and cost. The second set is calculated offline
by analyzing recorded data of the execution of the scenarios:

i) Execution time: The execution time is defined as the time
it took for all agents to reach their goals. It is bounded by
a pre-configured timeout value; once passed, the simulation
will be interupted.

ii) Number of goals reached: This counts the number of
agents that managed to reach the goal before the timeout. In



starts + goals 
environment 

params

path requests

performance 
metrics

Bench Manager 
Node

generates

RMF Traffic Editor

building.yaml

3D environment (e.g. office,
airport, hospital, ...)
Navigation graph

vertices treated as
possible spawn locations

optional: crowd simulation
raytraced 

binary costmap

Gazebo

gzserver

gzclient

config.yaml

Robots starts and goals
number of robots +
random seed
list of starts + goals

Planning algorithm to be used
...

RMF
Commons

schedule
visualizer

building map
server

door supervisor

lift supervisor

traffic scheduler

blockage
moderator

task dispatcher

transformed poses
path request

robot states
free fleet server tf bridgenamespaced poses

spawn 
+ 

control
robots

current state

robot descriptions

N robot instances

free fleet
client 

robot state
publisher

Nav2
gazebo spawner
map server
amcl (* just ground
truth from sim)
controller
planner
recoveries
bt navigator
waypoint follower

schedule

planning library 
(e.g. libMRP)

analytics + statisticscollected 
metrics

report generation

Fig. 2: A flow-chart of the proposed architecture. On the left, components that generate the scenario and set the configurations (e.g. starts,
goals, planners to be used). In the middle the simulation and navigation frameworks, and the components (Bench Manager Node and free
fleet server) orchestrating the benchmark. On the right the RMF components that are used for controlling the fleet and visualization.

Fig. 3: The airport scenario is the largest and it offers the possibility
to test the algorithms considering large automated ground vehicles.

Fig. 4: Left: The office environment provides different homotopy
classes and cluttered spaces. Right: The warehouse environment
has been designed considering classical situations for robots work-
ing in intralogistic settings.

case the execution time is less than the timeout, this number
will match the number of agents in the scenario.

iii) Minimum distance between two agents: At any point
in time, we check the respective distances between all
controlled agents. Accordingly, we can see whether some
agents ran into each other, and if not, how close they got.

iv) Time blocked per agent and total: An agent is consid-
ered blocked if it has not progressed by at least one cell width
within a certain time. For each agent, this metric calculates
the amount of time spent blocked using a floating window
approach.

We use the selected metrics for analysing the algorithms’
performance in the following section.

V. EXPERIMENTS AND RESULTS

To demonstrate the usefulness of the benchmark suite
for gaining insights from different algorithms and scenarios,

we performed experiments that compare several algorithms
namely: distributed A* [5], CBS [17], ECBS [2] from lib-
MultiRobotPlanning [7] and EECBS [11]. For all the exper-
iments we use a differential drive robot model, and standard
planners and parameters in Nav2. All the experiments run on
a computer with Intel(R) Xeon(R) W-1270 CPU, 3.40GHz
and 16Gb of memory.

A. Comparison of Algorithms Across Multiple Scenarios
For the main experiment, we modified three parameters:

the random seed determining the starting positions of robots
and tasks, the map used (office and warehouse) and the
number of agents (5 and 9). In total, 864 experiments were
performed, split evenly across the possible permutations of
parameters. For algorithms supporting suboptimality, a factor
of 1.2 was used.

Looking at the rate of success in planning a schedule
within a timeout of 60 s, we obtain the results listed in Table
II. We choose to group these results by the map being used,
as there are significant differences in the planning success
rate depending on the map being used.

Algorithm Office Warehouse

A* 100% 100%
CBS 99% 83%
ECBS 100% 97%
EECBS 100% 100%

TABLE II: Algorithms’ success rate of finding a schedule within
60 s, on a basis of 108 experiments for each combination of map
and algorithm.

CBS gives us an indication of the difficulty of maps:
with still 99% success for office, this goes down to 83%
for the warehouse. The time limit of 60 s was selected as a
high, but still reasonable number for real-life applications. In
fact, lower times may be desired and some algorithms like
EECBS can easily provide these, while others like CBS take
significantly longer.



In the next step, we compare how well the plans generated
by the different algorithms actually perform during execution
in the simulation. The normalized success rate describes all
scenarios where all algorithms could calculate a schedule.
For the overall success rate, cases where no schedule was
found count as unsuccessful. Whether the execution would
have been successful, had the schedule creation finished, is
not known, but the practical result is the failure.

Table III shows the differences between algorithms. On
the office map, the success rate is high for all algorithms
and the differences are relatively small. On the more diffi-
cult warehouse map, differences become more distinct. The
highest success rate, both relatively and overall, is obtained
by ECBS. CBS, on the other hand, scores decently in the
normalized column, but obtains the lowest success rate in the
overall examination. This is due to the fact that CBS is the
computationally heaviest of the four algorithms. In 17 of 108
scenarios, CBS does not find a schedule within the timeout
of 60 s. For ECBS, this only occurs twice and for A* and
EECBS, it is never the case. While the decentralized A* has
a slightly lower success rate on the normalized warehouse
column, it is not far below the other algorithms.

Algorithm Success Rate
Normalized Overall
Office Wareh. Office Wareh.

A* 95% 81% 95% 77%
CBS 93% 84% 92% 70%

ECBS 95% 89% 95% 85%
EECBS 95% 84% 95% 78%

TABLE III: Algorithms’ success rate of completing a scenario
(planning and execution) within the timeout of 5min. Data based
on 108 experiments, except for warehouse, normalized, which is
based on 91 experiments.

B. Summary
In summary, our experiments suggest that using subopti-

mal algorithms is a viable approach for coordinating multiple
robots in those settings. ECBS turned out to be faster than
CBS and also delivered a higher success rate. EECBS is even
faster and never failed to find a solution in our scenarios, at
a small cost in the success rate. Overall, the local recovery
feature offered by Nav2 may be sufficient in some cases
to even use decentralized approaches such as A*. This
applies especially if the environment is less static than in
the scenarios we set up. If robots have to rely even more on
local observations due to a rapidly changing environment, an
approach using central planning is further disadvantaged.

VI. CONCLUSIONS

In this paper, we introduce MRP-Bench: a novel bench-
mark for multi-agent task assignment and path planning
problems in realistic environments. The benchmark offers
a set of scenarios, metrics ready to be used together with
state-of-the-art algorithms. Its architecture has been designed
such that more scenarios or additional robot models can be
integrated with little effort. We provide interfaces to the most
common frameworks for robot simulation, navigation and
multi-robot planning algorithms. In the proposed prelimary

experiments, we were able to demonstrate that data gathered
using this benchmark allows us to judge the suitability of
multi-agent algorithms for different scenarios. By going open
source, i.e. https://github.com/boschresearch/
mrp_bench, we hope that the research community will
use this benchmark suite to evaluate novel algorithms and
scenarios in the field of multi-robot planning. We warmly
welcome contributions to this project.

REFERENCES

[1] Welcome to flatland. https://flatland.aicrowd.com/
intro.html. Accessed: 2022-3-31.

[2] M. Barer, G. Sharon, R. Stern, and A. Felner. Suboptimal variants of
the Conflict-Based search algorithm for the Multi-Agent pathfinding
problem. In Seventh Annual Symposium on Combinatorial Search,
July 2014.

[3] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L.E. Kavraki. Motionbenchmaker:
A tool to generate and benchmark motion planning datasets. IEEE
Robotics and Automation Letters, 7(2):882–889, 2021.

[4] M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, V. Nguyen,
and T.C. Son. Experimenting with robotic intra-logistics domains.
arXiv:1804.10247 [cs], April 2018.

[5] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968.

[6] E. Heiden, L. Palmieri, L. Bruns, K.O. Arras, G.S. Sukhatme, and
S. Koenig. Bench-mr: A motion planning benchmark for wheeled
mobile robots. IEEE Robotics and Automation Letters, 6(3):4536–
4543, 2021.

[7] W. Hönig. libMultiRobotPlanning. https://github.com/
whoenig/libMultiRobotPlanning. Accessed: 2022-5-30.

[8] O. Kaduri, E. Boyarski, and R. Stern. Algorithm selection for optimal
Multi-Agent pathfinding. ICAPS, 30:161–165, June 2020.

[9] L. Kästner, T. Bhuiyan, T.A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun, et al. Arena-bench:
A benchmarking suite for obstacle avoidance approaches in highly
dynamic environments. IEEE Robotics and Automation Letters,
7(4):9477–9484, 2022.

[10] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[11] J. Li, W. Ruml, and S. Koenig. Eecbs: A bounded-suboptimal search
for multi-agent path finding. In AAAI, 2021.

[12] S. Macenski, F. Martı́n, R. White, and J.G. Clavero. The marathon 2:
A navigation system. March 2020.

[13] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall.
Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66):eabm6074, 2022.

[14] S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller,
N. Bhattacharya, J. Watson, A. Egli, C. Eichenberger, C. Baumberger,
G. Vienken, I. Sturm, G. Sartoretti, and G. Spigler. Flatland-rl : Multi-
agent reinforcement learning on trains, 2020.

[15] open-rmf. RMF demos. https://github.com/open-rmf/
rmf_demos. Accessed: 2022-5-19.

[16] L. Rocha and K. Vivaldini. Plannie: A benchmark framework for au-
tonomous robots path planning algorithms integrated to simulated and
real environments. In 2022 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 402–411. IEEE, 2022.

[17] G. Sharon, R. Stern, A. Felner, and N.R. Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artif. Intell., 219:40–66,
February 2015.

[18] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T.K. Satish Kumar, E. Boyarski, and R. Bartak.
Multi-Agent pathfinding: Definitions, variants, and benchmarks. June
2019.

[19] N.R. Sturtevant. MAPF benchmarks. https://movingai.com/
benchmarks/mapf.html. Accessed: 2022-3-30.

[20] N.R. Sturtevant. Benchmarks for Grid-Based pathfinding. IEEE Trans.
Comput. Intell. AI Games, 4(2):144–148, June 2012.

[21] M. Yagiura and T. Ibaraki. The generalized assignment problem and
its generalizations. St. Marys College of Maryland, St. Marys City,
MD, USA, Tech. Rep., 1989.

https://github.com/boschresearch/mrp_bench
https://github.com/boschresearch/mrp_bench
https://flatland.aicrowd.com/intro.html
https://flatland.aicrowd.com/intro.html
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/open-rmf/rmf_demos
https://github.com/open-rmf/rmf_demos
https://movingai.com/benchmarks/mapf.html
https://movingai.com/benchmarks/mapf.html

	Introduction
	Related Work
	Benchmark implementation
	Software Architecture
	Starting Up
	Planning and Fleet Management
	Local Navigation
	Data Visualization and Collection


	Evaluation Sub-System
	Scenarios
	Metrics

	Experiments and Results
	Comparison of Algorithms Across Multiple Scenarios
	Summary

	Conclusions
	References

