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Abstract— Fundamentally, emergent communication is a rep-
resentation learning problem. Typically, it is phrased as a
Lewis game, in which participants signal using observational
information. In multi-agent reinforcement learning (MARL)
with communication, coordination information (ordinal) is often
required in addition to referential info about one’s observa-
tions. The information bottleneck defines a trade-off between
complexity and utility. However, in MARL, the information
sent, and the information received defines a different Markov
network than defined in the traditional information bottleneck
problem. Thus, in this work, we define, study, and show how
to approach the InfoLewis problem, which defines a signaling
trade-off between sending referential complexity and ordinal
task-specific utility. We use information theory to introduce
information rich, variational compositional communication to
adequately embed referential information and to provide a
contrastive objective to ground communication in intent-specific
features. We test our novel methodology on referential and
ordinal multi-agent tasks.

I. INTRODUCTION

Emergent communication studies the creation of artificial
language. Often phrased as a Lewis game, speakers and
listeners learn a set of tokens to communicate complex
observations [1]. However, in multi-agent reinforcement
learning (MARL), agents suffer from partial observability
and non-stationarity [2], which aims to be solved with
decentralized learning through communication. In the MARL
setup, agents, as speakers and listeners, learn a set of tokens
to communicate observations, intentions, coordination or
other experiences which help facilitate solving tasks [3]–
[5]. Agents learn to communicate effectively through a
backpropagation signal from their task performance [6]–
[11]. This has been found useful for applications in human-
agent teaming [4], [12]–[14], multi-robot navigation [11],
and coordination in complex games such as StarCraft II [15].

A meta-analysis of human studies shows that communi-
cation quality has a strong relationship with task perfor-
mance [16]. When determining a message representation,
encoding solely the observations results in suboptimal per-
formance [9]. Recurrent agents are able to process coor-
dination information into their messages, but often send
null messages, creating degenerate communication proto-
cols [3], [4], [10]. In an aim to increase the informativeness
of communication, recent work has attempted to increase
the representational capacity by decreasing the convergence
rates [3], [17]–[20]. However, these methods only account
for representing observations more informatively.
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Traditionally, in MARL with communication, the commu-
nication system is learned in an unsupervised manner from
a gradient signal based on the actions taken for the task.
However, choosing the correct action relies on a sufficient
communication protocol, creating non-stationarity. In this
work, we aim to ground the communication to more accu-
rately represent the intent through goal-grounded contrastive
learning. Contrastive learning [21], which builds on the
MaxEnt reinforcement learning objective [22], aims to build
current representations which are closer to future states than
random states. We introduce compositional emergent com-
munication grounded in task specific information through
contrastive learning.

Mutual information, denoted as I(X;Y ), looks to measure
the relationship between random variables,

I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
which is often measured through Kullback-Leibler diver-
gence [23], I(X;Y ) = DKL(p(x, y)||p(x) ⊗ p(y)). Ulti-
mately, the input message similarity and goal-grounded in-
formation can be modeled as the information bottleneck [24],
which defines a trade-off between complexity of information
(compression, I(X, X̂)) and the preserved relevant informa-
tion (utility, I(X̂, Y )). We introduce an information theo-
retic objective for multi-agent communication, which shows
that one only needs decentralized training for referential,
observation-based communication, but centralized training is
necessary to properly learn non-referential, emergent com-
munication with respect to coordination and intent. That is,
backpropagating the gradient signal through communication
edges is essential centralization during training.

In addition, the representational capacity of a token de-
pends on its form and properties. Inspired by continuous
word embeddings in natural language, VQ-VIB [20] learns
to cluster continuous representations into discrete categories
while measuring similar levels of informativeness as continu-
ous tokens. Compositional language strings together multiple
tokens to form a single message at each time-step [25] rather
than single tokens at each time-step [26]. Compositional
language has been shown to promote few-shot generalization
to new concepts with humans [13] and agents [27].

In this work, we enable a compositional emergent com-
munication paradigm, which exhibits clustering and infor-
mativeness properties. We show theoretically and through
empirical results that compositional language enables inde-
pendence properties among tokens with respect to referential
information. Additionally, when combined with contrastive



learning, our method outperforms competing methods that
only ground communication on referential information. Fi-
nally, we show that contrastive learning acts as an optimal
critic for communication, reducing sample complexity for
the unsupervised emergent communication objective.

II. RELATED WORK

A. Emergent Communication

Several methodologies currently exist to increase the in-
formativeness of emergent communication. With discrete
and clustered continuous communication, the number of
observed distinct communication tokens is far below the
number permissible [28]. As an attempt to increase the
emergent “vocabulary”, as well as decrease the data required
to converge to an informative communication “language”,
work has added a bias loss to emit distinct tokens in different
situations [17]. Though more recent work has found that
the sample efficiency can be further improved by ground
communication in observation space with a supervised re-
construction loss [18]. Information maximizing autoencoders
aim to maximize the state reconstruction accuracy for each
agent. However, grounding communication in observations
has found to easily satisfy this objective while still requiring
a myriad more samples to explore to find a task-specific
communication space [3]. Thus, it is necessary to use task
specific information to communicate informatively. Other
work aims to use the information bottleneck [24] to decrease
the entropy of messages [19]. In our work, we use contrastive
learning to increase representation similarity with future
goals, which we show optimally optimizes the Q-function
for messages.

B. Natural Language Inspiration

The properties of the tokens in emergent communica-
tion directly affect their informative ability. As a baseline,
continuous communication tokens can represent maximum
information but lack human-interpretable properties. Discrete
1-hot (binary vector) tokens allow for a finite vocabulary,
but each token contains the same magnitude of information,
with equal orthogonal distance to each other token. Similar
to word embeddings in natural language, discrete proto-
types are an effort to cluster similar information together
from continuous vectors [28]. Building on the continuous
word embedding properties, VQ-VIB [20], an information
theoretic, observation grounding based on VQ-VAE proper-
ties [29], uses variational properties to provide word em-
bedding properties for continuous emergent tokens. Like
discrete prototypes, they exhibit a clustering property based
on similar information, but are more informative. However,
each of these message types determine a single token for
communication. In our work, we build off VQ-VAE for use in
creating compositional communication. Tokens are stringed
together to create emergent “sentences”.

III. PRELIMINARIES

We formulate our setup as a centralized training, de-
centralized execution [6], partially observable Markov

Decision Process with communication (Dec-POMDP-
Comm). Formally, our problem is defined by the tuple,
⟨S,A,M, T ,R,O,Ω, γ⟩. We define S as the set of states,
Ai , i ∈ [1, N ] as the set of actions, which includes task
specific actions, and Mi as the set of communications for
N agents. T is the transition between states due to the
multi-agent joint action space T : S × A1, ...,AN → S .
Ω defines the set of observations in our partially observable
setting. The partial observability requires communication to
complete the tasks successfully. Oi :M1, ...,MN ×Ŝ → Ω
maps the communications and local state, Ŝ, to a distribution
of observations for each agent. R defines the reward function
and γ defines the discount factor.

A. Architecture

We build on REINFORCE [30]. However, since we study
cooperative tasks, we allow agents to share their policy
network parameters during training. The policy network is
defined by three stages: Observation encoding, Communi-
cation, and action decoding. The best observation encoding
and action decoding architecture is task dependent, i.e., using
multi-layer perceptrons (MLPs), CNNs [31], GRUs [32], or
transformer [33] layers are best suited to different inputs. The
encoder transforms observation and any sequence or memory
information into an encoding H .

Our work focuses on the communication stage, which can
be into three substages: message encoding, message pass-
ing (often considered sparse communication), and message
decoding. The message passing is defined by concurrent
work [34]. For message decoding, we build on a multi-
headed attention framework, which allows an agent to learn
which messages are most important [35]. The message
encoding is defined by our compositional communication
framework, as described in section IV.

B. Objective

The message encoding substage can be defined as an
information bottleneck problem. The deep variational in-
formation bottleneck defines a trade-off between preserving
useful information and compression [24], [36]. We assume
that our observation and memory/sequence encoder provides
an optimal representation Hi suitable for sharing relevant
observation and intent/coordination information. We hope to
recover a representation Y i, which contains the sufficient
desired outputs.

In our scenario, the information bottleneck is a trade-off
between complexity of information I(Hi;M i) (representing
the encoded information exactly) and representing the rele-
vant information I(M j ̸=i;Y i), which is signaled from our
contrastive objective. In our setup, the relevant information
flows from other agents through communication, signaling a
combination information bottleneck and Lewis game, dubbed
InfoLewis. We additionally promote complexity through our
compositional independence objective, I(M i

1; . . . ;M
i
L|Hi).



This is formulated by the following Lagrangian,

L( p(mi|hi) ) = − βuÎ(M
j ̸=i;Y i) + βcÎ(H

i;M i)

− βI Î(M
i
1; . . . ;M

i
L|Hi)

where the bounds on mutual information Î are defined in
equations 2 3 6. The first two terms define the InfoLewis
objective. Overall, our objective is,

J(θ) = max
π
E

[∑
t∈T

∑
i∈N

γtR(st, at) + L( p(mt|ht) )

]
s.t.(at,mt, ht) ∼ πi, st ∼ T (st−1)

IV. COMPLEXITY THROUGH COMPOSITIONAL
COMMUNICATION

We aim to satisfy the complexity objective, I(Hi,M i),
through compositional communication. In order to induce
complexity in our communication, we want the messages
to be as non-random as possible. That is, informative with
respect to the input hidden state h. In addition, we want
each token within the message to share as little information
as possible with the preceding tokens. Thus, each additional
token adds only informative content. Each token has a fixed
length in bits W . The total sequence is limited by a fixed
limit,

∑L
l Wl ≤ S, of S bits and a total of L tokens.

We use a variational message generation setup based on
VQ-VAE [29], which maps the encoded hidden state h
to a message m; that is, we are modeling the posterior,
πi
m(ml|h). We limit the vocabulary size to K tokens, ej ∈
RD, j ∈ [1,K] ⊂ N, where each token has dimensionality
D and l ∈ [1, L] ⊂ N. Each token ml is sampled from a
categorical posterior distribution,

πi
m(ml = ek|h) =

1 for k = argmin
j
||ml − ej ||2

0 otherwise

such that the message ml is mapped to the nearest neighbor
ej . A set of these tokens makes a message m. To satisfy the
complexity objective, we want to use mi to well-represent
hi and consist of independently informative mi

l .

A. Independent Information

Starting with the independent information objective, we
want to minimize the interaction information,

I(m1; . . . ;mL|h) =∫
. . .

∫
fm(m1, . . . ,mL, h)dh dm1 . . . dmL

which defines the conditional mutual information between
each token and,

fm(∗) = p(h)p(m1; . . . ;mL|h) log
p(m1; . . . ;mL|h)∏L

l p(mL|h)
(1)

Let πi
m(ml|h) be a variational approximation of p(ml|h),

which is defined by our message encoder network. Given
that each token should provide unique information, we
assume independence between cm. Thus, it follows that our

compositional message is a vector, m = [m1, . . . ,mL], and
is jointly Gaussian. Moreover, we can define q(m̂|h) as a
variational approximation to p(m|h) = p(m1; . . . ,mL|h).
We can model q with a network layer and define its loss as
||m̂ − m||2. Thus, transforming equation 1 into variational
form, we have,

gm(m1, . . . ,mL, h) = p(h)q(m̂|h) log q(m̂|h)∏L
l πi

m(ml|h)
Since Kullback Leibler divergence DKL is non-

negative, DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)
≥

0, it follows that
∫
q(m̂|h) log q(m̂|h)dm̂ ≥∫

q(m̂|h) log
∏L

l πi
m(ml|h)dm̂ Thus, we can lower

bound our interaction information,

I(m1; . . . ;mL|h) ≥
∫

. . .

∫
gm(∗)dhdm1 . . . dmL

= Eh∼p(h)

[
DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)]
Since we want the mutual information to be minimized in
our objective, we maximize,

Î(m1; . . . ;mL|h) =
Eh∼p(h)

[
DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)]
(2)

B. Input-Oriented Information

In order to induce complexity in the compositional mes-
sages, we additionally want to maximize the mutual infor-
mation I(H;M) between the composed message m̂ and the
encoded information h. By definition of mutual information,
we have,

I(H;M) =

∫ ∫
p(h)p(m̂|h) log p(m̂|h)

p(m̂)
dm̂ dh

Substituting q(m̂|h) for p(m̂|h), the same KL Divergence
identity, and defining a Gaussian approximation z(m̂) of the
marginal distribution p(m̂), it follows that,

I(H;M) ≥
∫ ∫

p(h)q(m̂|h) log q(m̂|h)
z(m̂)

dm̂ dh

In expectation of equation 2, we have q(m̂|h) = q(m̂|h) =∏L
l πi

m(ml|h). This implies that, for m̂ = [m1, . . . ,mL],
there is probabilistic independence between mj ,mk, j ̸= k.
Thus, expanding, it follows that,

I(H;M) ≥
L∑
l

∫ ∫
p(h)q(ml|h) log

q(ml|h)
z(ml)

dml dh

=

L∑
l

Eh∼p(h) [DKL (q(ml|h)||z(ml)))]

where z(ml) is a standard Gaussian. Thus, we have our
Langrangian term,

Î(Hi,M i) = −
L∑
l

Eh∼p(h) [DKL (q(ml|h)||z(ml)))] (3)

Conditioning on the input or observation data is a decen-
tralized training objective.



C. Message Generation Architecture

Now, we can define the pipeline for message generation.
The idea is to create an architecture that can generate features
to enable independent message tokens. We expand each com-
pressed token into the space of the hidden state h (1-layer
linear expansion) since each token has a natural embedding
in R|h|. Then, we perform attention using a softmin to
help minimize similarity with previous tokens and sample
the new token from a variational distribution. See algorithm 1
for full details. During execution, we can generate messages
directly due to equation 2, resolving any computation time
lost from sequential compositional message generation.

V. UTILITY THROUGH CONTRASTIVE LEARNING

First, note that our Markov Network is as follows: Hj →
M j → Y i ← Hi. Continue to denote i as the agent
identification and j as agent ID such that j ̸= i. We aim
to satisfy the utility objective of the information bottleneck,
I(M j ;Y i), through contrastive learning.

Proposition V.1. Utility mutual information is lower
bounded by the contrastive NCE-binary objective,
I(M,Y ) ≥ log σ(f(s,m, s+f ))− log σ(f(s,m, s−f )).

We suppress the reliance on h since this is directly passed
through. By definition of mutual information, we have,

I(M j ;Y i) =

∫ ∫
p(m)πR+(y|m) log

πR+(y|m)

πR−(y)
dmdy

Our network model learns πR+(y|m) from rolled-out tra-
jectories, R+, using our policy. The prior of our network
state, πR−(y), can be modeled from rolling out a random
trajectory, R−. Unfortunately, it is intractable to model
πR+(y|m) and πR−(y) directly during iterative learning, but
we can sample y+ ∼ πR+(y|m) and y− ∼ πR−(y) directly
from our network during training.

It has been shown that log p(y|m) provides a lower bound
on mutual information [37],

I(M j ;Y i) ≥ E

[
1

K

K∑
k=1

log πR+(yk|mk)− log πR−(yk)

]
(4)

with the expectation over
∏

l p(ml, yl). However, we need a
tractable understanding of the information Y .

Lemma V.2. πR−(y) = p(s′ = s−f |y).

In the information bottleneck, Y represents a desired
outcome. In our setup, y is coordination information which
helps create a desired out, such as any action a−. This
implies, y =⇒ a−. Since the transition is known, it follows
that a− =⇒ s−f , a random future state. Thus, we have,
πR−(y) = p(s′ = s−f |y).

Lemma V.3. πR+(y|m) = p(s′ = s+f |y,m).

This is similar to the proof for lemma V.2, but requires
assumptions on messages m from the emergent language. We
note that when m is random, the case defaults to lemma V.2.
Thus, we assume we have at least input-oriented information

Algorithm 1 Compositional Message Gen.(ht)

1: T ← num tokens
2: m = 0 ▷ T × dm, dm ← token size
3: Q← Q MLP(ht)
4: V ← V MLP(ht)
5: for i← 1 to T do
6: K ← K MLP(m)

7: ĥ = softmin(Q
⊺mean(K,1)√

dk
)⊺V

8: mi ∼ N (ĥ;µ, σ)
9: end for

10: return m

in m given sufficiently satisfying equation 3. Given a suffi-
cient emergent language, it follows that y =⇒ a+, where
a+ is an intention action based on m. Similarly, since the
transition is known, a+ =⇒ s+f , a desired goal state along
the trajectory. Thus, we have, πR+(y|m) = p(s′ = s+f |y,m).

Recall the following (as shown in [21]), which we have
adapted to our communication objective,

Proposition V.4 (rewards → probabilities). The Q-function
for the goal-conditioned reward function rg(st,mt) = (1−
γ)p(s′ = sg|yt) is equivalent to the probability of state sg
under the discounted state occupancy measure:

Qπ
sg (s,m) = pπ(s+f = sg|y) (5)

and

Lemma V.5. The critic function that optimizes equation 4
is a Q-function for the goal-conditioned reward function
up to a multiplicative constant 1

p(sf )
: exp(f∗(s,m, sf ) =

1
p(sf )

Qπ
sf
(s,m).

The critic function f(s,m, sf ) = y⊺enc(sf ) represents
the similarity between the encoding y = enc(s,m) and the
encoding of the future rollout sf .

Given lemmas V.2 V.3 V.5 and proposition V.4, it follows
that equation 4 is the NCE-binary [38] (InfoMAX [39])
objective,

Î(M j , Y i) = log
(
σ(f(s,m, s+f ))

)
+log

(
1− σ(f(s,m, s−f ))

)
(6)

which lower bounds the mutual information, I(M j , Y i) ≥
Î(M j , Y i). The critic function is unbounded, so we constrain
it to [0, 1] with the sigmoid function, σ(∗).

This result shows a need for gradient information to
flow backwards across agents along communication edge
connections.

VI. EXPERIMENTS AND RESULTS

When evaluating an artificial language in MARL, we only
are interested in referential tasks, in which communication
is required to complete the task. With regard to intent-
grounded communication, we study ordinal tasks, which
require coordination information between agents to success-
fully complete. Thus, we consider tasks with a team of
agents to foster messaging that communicates coordination
information that also includes their observations.



Fig. 1: 10 agents navigate without vision of other agents through the
bidirectional traffic junction environment.

Fig. 2: Above is an ablation of the derived referential complexity loss for
our compositional communication. The legend provides mean ± variance
of the best performance.

A. Environments

We consider a benchmark which requires both referential
and ordinal capabilities within a team of agents. The blind
traffic junction environment [10] requires multiple agents to
navigate a junction without any observation of other agents.
Rather, they only observe their own state location. See figure
1. We evaluate over 10 seeds.

B. Baselines

To evaluate the utility of our contrastive objective,
we compare our method to the following baselines:
(1) no-comm, where agents do not communicate; (2)
rl-comm, which uses a baseline communication method
learned solely through policy loss [10]; (3) ae-comm, which
uses an autoencoder to ground communication in input
observations [18]; (4) VQ-VIB, which uses a variational
autoencoder to ground discrete communication in input ob-
servations and a mutual information objective to ensure low
entropy communication [20].

C. Input-Oriented Information Results

We provide an ablation of the loss parameter β in Fig. 2.
When β = 0, we use our compositional message paradigm
without our derived loss terms. We find that higher com-
plexity and independence loss increases sample complexity.

Fig. 3: Our method uses compositional complexity and contrastive utility to
outperform other baselines in terms of performance and sample complexity.
The legend provides mean ± variance of the best performance.

When β = 1, the model was unable to converge. However,
when there is no regularization loss, the model performs
worse (and has no guarantees about referential representa-
tion).

D. Communication Utility Results

Unfortunately, due to coordination in MARL, grounding
communication in referential features is not enough. Finding
the communication utility requires grounding messages in
ordinal information. Overall, Fig. 3 shows that our com-
positional, contrastive method outperforms all methods fo-
cused on solely input-oriented communication grounding.
Our method yields a higher average task success rate and is
able to achieve it with a lower sample complexity. Training
with the contrastive update tends to spike to high success
but not converge, often many episodes before convergence,
which leaves area for training improvement.

a) Regularization loss convergence: At convergence
to high task performance, the autoencoder loss actually
increases in order to represent the coordination informa-
tion. This follows directly from the information bottleneck.
However, our compositional communication loss does not
converge before task performance convergence. Additionally,
the contrastive loss tends to monotonically decrease and con-
verges after the task performances converges. This implies
empirical evidence that the contrastive loss is an optimal
critic for messaging.

VII. DISCUSSION

Any referential-based setup can be performed with a
supervised loss, as indicated by the instant satisfaction of
referential objectives. However, in multi-agent settings, the
harder challenge is to enable coordination through communi-
cation. Using contrastive communication as an optimal critic
aims to satisfy this. Since contrastive learning benefits from
good examples, this method would perhaps be even more
powerful in offline RL. In this setting, the communication
may be bootstrapped, since our optimal critic has examples



with strong signals. Additionally, the minimization of our in-
dependence objective enables tokens which contain minimal
overlapping information with other tokens. Preventing trivial
communication paradigms enables higher performance. We
want to continue to explore the benefits of these properties
in future applications. Each of these objectives is comple-
mentary, so they are not trivially minimized during training,
which is a substantial advantage over comparative baselines.
Unlike prior work, this enables the benefits of training with
reinforcement learning in multi-agent settings.
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