
Modular Value Function Factorization in Multi-Agent
Reinforcement Learning

Oliver Järnefelt1 and Carlo D’Eramo2,3

Abstract— Real-world problems with multiple actors require
them to coordinate while making decisions independently
from each other. Typically, the large dimensionality and high
unpredictability of the environment hinder the handcrafting
or planning of effective behaviors. Multi-agent Reinforcement
Learning (MARL) provides a framework for solving such
problems by learning a parameterized policy for each agent that
only depends on the state. Common approaches factorize the
value functions of the agents enabling them to take independent
decisions, or learn complex interactions by modeling the utility
or payoff functions of the underlying coordination graph. In
this paper, we discover the benefit of exploiting the connection
between these two approaches. We propose to leverage the
modularity of the embedded coordination graph by formulating
the total utility as a sum of subteam mixings and prove that our
modular factorization is able to cover the Independent-Global-
Max (IGM) class of joint utility functions. We suggest finding
the closest disjoint approximation of non-divisible graphs via
graph partitioning, the quality of which we evaluate with a
novel value-based partitioning distance measure. We derive
theoretical and empirical advantages of our method evincing
its benefit over baselines in several one-shot games, designed to
highlight the promise of our modular factorization methods.

I. INTRODUCTION
The ability to coordinate is a crucial requirement for

autonomous systems, especially in real-world environments
featuring multiple actors whose interactions have impli-
cations on the task dynamics. Consider for example the
coordination requirements for an autonomous vehicle driving
through a busy intersection or a warehouse robot assisting a
human worker in moving heavy objects. As the complexity of
the task increases, programming desired behaviors by hand
becomes tedious and error-prone. In contrast, reinforcement
learning (RL) [1] provides a flexible framework to learn opti-
mal behavior from simple interactions with an environment,
such that an agent observes the effect of its actions on the
environment and optimizes its strategy. When transitioning
from single-agent to multi-agent environments, the variety
of problems significantly increases. As opposed to its single-
agent counterpart, approaches in multi-agent reinforcement
learning (MARL) [2] vary in their assumptions on, e.g.,
which communication constraints exist or how the reward
provided by the environment is shared amongst the agents –
whether it is shared globally or given locally to individuals,
and if the latter is true, if the reward structure is zero- or
general-sum which in turn determines the cooperativeness
of the problem.

1Department of Computer Science, Aalto University, Finland
oliver.jarnefelt@aalto.fi

2 Department of Computer Science, TU Darmstadt, Germany
3 Hessian.AI, The Hessian Center for Artificial Intelligence, Germany

In this work, we are interested in purely cooperative
tasks – the joint behavior of the population determines a
joint reward, which then gets evenly distributed among all
of the agents. Furthermore, we require that the agents are
unable to communicate explicitly during deployment. This
implies that after the training phase, each agent needs to
possess and adhere to a learned protocol that determines
what to do in each situation. This widely-applied learning
paradigm is known as centralized training decentralized
execution (CTDE) [3]. A simple and natural solution is to
train a population of agents independently, i.e., treat the
other agents as part of the environment [2]. This approach
is however hindered by the multi-agent credit assignment
problem: given that the reward from the environment is
shared equally between all agents, assessing the contribution
of each individual becomes hard.

a) Related works: The introduction of deep neural
networks to RL [4] has resulted in large advances in the
field of cooperative MARL, leading to a surge of research
activity around value function factorization (VFF) [5], [6].
VFF approaches train a centralized value function, which is
some mixing of the individual agent utilities. When the gra-
dient signal originating from the environmental reward gets
backpropagated, said mixing acts as an implicit mechanism
to distribute the credit amongst the population of agents. In
parallel with VFFs, the coordination graph (CG) [7] has
proven to be a powerful concept in modeling cooperative
multiagent systems. CGs provide a graphical representation
of the reward structure for a given state of the problem:
the edges between agent nodes describe the factors that
compose the overall value function. They are a suitable fit for
describing many interesting applications – in internet routing
each agent node has a routing table containing network
topology information [8], in power grid optimization the
agents communicate only to their neighbors determined by
the grid layout [9] and in multi-agent control of individual
robots whose embodiment consists of multiple limbs the
CG structure is defined via the morphology specification
[10]. The primary idea motivating our work is that in all
of the previous cases, the influence of each agent has a
limited scope within the population - depending on the CG
topology big graphs can exhibit extensive clustering that
implies invariances between subpopulations. Recent works
have focused on investigating the representational capacities
of CG-based value functions [11] and ways of scaling them
up to enable efficient coordination in complex environments
[12], [13]. A typical assumption made by CG-based methods
is that agents of the population are able to communicate

with the adjacent agents in the underlying coordination
graph during execution – this is in contrast to our learning
setting, where we assume agents to have no ability to share
information to their neighbors when selecting actions.

b) Contribution: In this paper, we propose to lever-
age the formalism of CGs to provide structure to VFF
approaches. In cases where the original problem is decom-
posable to smaller constituents which require little to no
information exchange, we argue that learning should be
modular, i.e., behavior for each constituent is learned via a
local mixing function, which needs to only consider a subset
of agent utilities to form the total value estimate. When this
assumption holds, modular approaches can provide improve-
ments in terms of learning speed. Flat approaches that do not
exploit the locality of agent interactions have been shown to
suffer from growing population sizes [14] – we expect meth-
ods utilizing the modularity principle to scale more favorably
due to a more structured implicit credit assignment they
provide to the actors. Simultaneously, compared to direct
CG modeling approaches [11], [12], modular VFFs retain
decentralizability and scale well even when the CG contains
factors of more than 2 agents - the joint utility function has
commonly been assumed to be a sum of pairwise factors to
mitigate the combinatorial explosion in the number of model
factors, an assumption our approach does not share. To this
end, as our main contribution, we present two novel modular
VFF algorithms, which we evaluate and analyze extensively
in simple matrix games.

II. BACKGROUND

In this work, we consider one-shot multi-agent games
which can be described as multi-agent extension of multi-
armed bandits. A DEC-MDP [3] is summarized by a tuple

M := ⟨S,U ,d,T , r, γ⟩,

where the joint action space U is the concatenation of
individual action spaces of all agents, and d,T and r are
multivariate extensions of their single-agent counterparts.
For a given DEC-MDP, our objective is to find a mutu-
ally independent set of policies π∗ that satisfies: π∗ =
argmaxu∼π Q∗

jt(s,u), where Q∗
jt(s,u) denotes the total

expected future discounted returns for the population. We
refer to this quantity as the optimal joint utility function.

The basis of our work is QTRAN [6], which can be
shown to cover the entire Independent-Global-Max (IGM)
condition satisfying joint utilities, i.e., the ones for which
ū = argmaxu Qjt(s,u) = {argmaxui

Qi(s, ui)}Ni=1 holds.
To do this, QTRAN ties the independent actor utilities Qi to
the total utility Qjt via the following connection:∑

i∈I
Qi(s, ui)−Qjt(s,u) + Vjt(s) =

{
0 u = ū

≥ 0 u ̸= ū

where Vjt(s) = maxu Qjt(s,u)−
∑N

i=1 Qi(s, ui). In practice,
L2 relaxations of the constraints are instead enforced via a
temporal difference loss LTD and a matching loss, which is
weighted sum of two terms Lnopt and Lopt.

III. METHOD

The key observation for our work is that there exists many
practical scenarios where 1) the underlying coordination
graph structure is either available by construction or can be
built without incurring large computational burden and 2) the
structure exhibits a level of modularity. By the latter we mean
that there are subpopulations of agents whose behaviors are
mutually independent eliminating the need of communication
between the groups. Depending on the exactness of the
modularity, we propose two different approaches to leverage
it as described in the following subsections.

A. Known Exact Structure Leveraging

We are interested in problems whose Q∗
jt(s, u) adheres to

the IGM condition and embeds by a Disconnected Hyper
Coordination Graph (DHCG), which is a particular subclass
of CGs [7].

Definition III.1 (Disconnected Hyper Coordination Graph).
A DHCG H is disjoint set of K components or partitions,
which themselves are hypergraphs1. Denote V as the total
set of all agents/vertices, and E as the total hyperedge set
of the graph. Let each component Ci := ⟨Vi, Ei⟩, where Vi

denotes the agents/vertices in component Ci and Ei the set
of hyperedges in Ci. Each hyperedge e ∈ Ei connects K ≥
1 vertices in Vi and corresponds to factor qe of the total
utility function. For the component vertices it holds that: V =⋃K

i=1 Vi and E =
⋃K

i=1 Ei. For disconnectivity, we further
require that Vi ∩ Vj ̸= ∅ ⇐⇒ i = j and Ei ∩ Ej ̸=
∅ ⇐⇒ i = j. Then DHCG is given as the union of the
disjoint components: H =

⋃C
i=1 Ci. The total joint utility

function is the sum over all hyperedge factors: Qjt(s,u) =∑
e∈E qe(s,ue), where ue denotes that actions selected by

the agents belonging to e.

We propose the Known Exact Structure Leverag-
ing (KESL) method to exploit the independence between
DHCG components by learning each one with a separate
QTRAN mixing. The total utility trained with the TD error
is:

Qjt(s,u) =

K∑
j=1

Q
(j)
jt (s,u · K(j; s)),

where Q
(j)
jt is the estimated joint utility for component Cj ,

and K(j; s) ∈ {0, 1}N×K is a component assignment matrix,
where each row i is a one-hot vector where the index of 1
tells which to component agent i gets assigned to. To verify
that KESL is compatible with the CTDE setting, we present
the following proposition (proof is omitted for brevity2):

Proposition 1. Let {Qi}Ni=1 denote the utility functions for
each agent and Qjt the joint utility computed by KESL, with
IGM guaranteeing component mixers {Q(j)

jt }Kj=1 and any

1Generalization of a normal graph with the difference that now edges can
connect more than 2 vertices.

2We still note that it is very similar to that of proof of Theorem 1 in [14]

component assigner K. For these quantities it holds that

argmax
u

Qjt(s,u) = {argmax
ui

Qi(s, ui)}Ni=1.

B. Known Approximate Structure Leveraging

With non-divisible CGs of large population sizes, in which
communication is mostly partitioned and inter-partition com-
munication happens only through small bottlenecks, we inter-
pret the partitions as approximately independent components
and learn to mix each one. We propose to find the closest
disjoint partitioning P of the original graph. After partition
assignment, we apply the steps of KESL on the partitions to
form joint utility. We name this process Known Approximate
Structure Leveraging (KASL).

While we leave the practical implementation of finding the
closest disjoint partitioning for future work, we still take the
first step to evaluating the quality of partitionings. To this
end, we propose a novel partitioning distance measure that
takes into account the functional form of the factors that get
broken by the partitioning.

Definition III.2. Consider a hypergraph H = ⟨V, E⟩, and
partitioning P . We define the partitioning distance d(H,P)
as the minimum estimation error achievable by any joint
utility function in the family of factorizations determined by
P:

d(H,P) = min
H′∈P

||Q∗
jt −Q∗

jt,H′ ||∞ (1)

Proposition 2. Given a hypergraph H = ⟨V, E⟩, let Ec ⊆
E denote the set of cut hyperedges3 by partitioning P that
introduces new hyperedges En = {e′ | ∃ e ∈ Ec s.t. e′ ⊂ e}.
Further, given a hyperedge pair ⟨e, e′⟩, with e ∈ En and
e ∈ Ec, we denote V+ = {v | v ∈ e′, e′ ⊂ e} and V− =
{v | v ∈ e′, e \ e′} and q̃e,+ = 1

|U−|
∑

u′
−∈U−

qe(·,u′
−).

Then, the minimum estimation error achievable by any utility
function within the family of factorizations determined by P
is upper bounded by (proof omitted for space limitations):

min
H′∈P′

||Q∗
jt −Q∗

jt,H′ ||∞ ≤
∑
e∈Ec

∑
e′∈En,e′⊂e

||qe − q̃e,+||∞.

IV. EXPERIMENTS

To understand the strengths and weaknesses of our ap-
proaches, we compare them with a set of carefully chosen
baselines in two matrix games, Deadliest Catch (DC) and
Generalized Firefighting (GFF), described in the following
subsections. To measure the benefit of breaking the original
problem into multiple smaller ones according to the DHCG
components, we compare against QTRAN [6] trained on the
entire population. While QTRAN should be able to learn all
the tasks, we expect to see it slowing down as N grows. The
QTRAN constraints imposed to ensure IGM property are not
exactly enforced but instead a soft relaxation of the original

3An edge is said to be cut if a partitioning assigns vertices of the edge
to different partitions.

problem is solved; when N grows, so does the number
of relaxed optimization constraints, thus, possibly hurting
accuracy of the factorization. We analyze where our method
stands w.r.t. to state-of-the-art coordination graph modeling
methods, by testing the performance of two versions of DCG
[12] – with (DCG) and without (CG4) parameter sharing
between learned coordination graph factors. Finally, as a
simple but naive approach for the tasks discussed above, we
also test the Independent Q-Learners (IQL) [2].

In all our experiments, we use ϵ-greedy policy, with ϵ = 1
for data gathering, which we do for 20, 000 and 5, 000
steps for DC and GFF, respectively. Each method is run
for 10 seeds for every environment. For evaluation, we use
ϵ = 0. The shaded areas in all the plots denote the 95%
confidence interval. The agent networks as well as the Qjt
and Vjt of every QTRAN mixer are all ReLU activated
fully-connected neural networks with two hidden layers and
hidden dimensionality 32. We use RMSProp with learning
rate 5e − 4, α = 0.99 and ϵ = 0.00001, with gradient
clip with max ℓ2 = 10, as suggested by e.g. [12]. For
QTRAN/KESL/KASL learning, we use λopt = λnopt = 1. All
our implementations are based the PyMARL [15] framework.
For CG and DCG, we used the original implementations
from the authors 5.

A. Deadliest Catch

We begin the experimental section by studying the most
favorable setting to our method, i.e., when the ground truth
CG is actually modular. For this purpose, we introduce
Deadliest Catch (DC), a simple matrix game in which a
fishing company dispatches K fleets to K island groups.
Each island group hosts |U| known fishing hotspots and each
vessel of a fleet needs to make a choice on which fishing
spot u it goes to. Each island group has their individual
hotspot ū which hosts a giant squid that needs to be fished
by all vessels of the fleet to succeed, otherwise the squid will
destroy all the boats trying to catch it incurring penalty of
−5 units. Company can sell each squid for 5 units and the
smaller catches from other fishing spots for with 1 unit. For
each fleet F the reward is thus:

ri =


5 if ūF = uj ∀j ∈ F
−5 if ∃j ∈ F , ūF ̸= uj

1 otherwise

resulting in the joint reward of rjt =
∑K

i=1 ri.
Game-theoretically, each component plays the classical

multi-agent generalization of the stag-hunt game with shared
rewards, also called the climbing game [16]. Each sub-game
of the proposed environment is testing the algorithms ca-
pability to avoid relative overgeneralization, and combining
multiple parallel sub-games for the total reward exacerbates
the issue. To test the effect of varying the number of vertices
or the sizes of each independent component in the underlying

4We thus overload the CG abbrevation - when there is a chance for
confusion, CG refers to the method.

5https://github.com/wendelinboehmer/dcg.

Fig. 1: Performances on DC environments

coordination graph, we benchmark the relevant methods on
3 instances of DC, whose parameters are specified in Table
I. Plots in Figure 1 demonstrate the results in all of the three

Name # agents Fleet sizes ū for each fleet
Small-Uniform (SUni) 6 {3,3} [0,1]
Big-Uniform4 (BUni4) 12 {4,4,4} [0,1,2]
Big-Diverse6 (BDiv6) 12 {3,3,6} [0,1,2]

TABLE I: Specifications of the DC environments tested.

environments. A few key observations can be made:
1) QTRAN performance degrades when increasing the

population size from N = 6 (SUni) to N = 12
(BUni4 & BDiv6). We investigate this in the end of
this subsection;

2) DCG gets stuck to a performance 5-6 in every envi-
ronment; the parameter sharing between learned payoff
functions employed by the approach leads to similar
action selection between agents, as demonstrated in
(c) and (d) matrices of Figure 2. As a result, DCG
is prone to getting stuck to behavior where only some
components of the DHCG are learned;

3) CG performs strongly on each of the tasks, but seems
to converge prematurely in BDiv6. Whereas it is not
hindered by parameter sharing, we hypothesize that
since it is modeling the total value function as a sum
of pairwise interactions, components that require high
number of agents to solve should be hard to learn
– convincingly, in this case it is indeed the 6-agent
component that does not get learned, as can be seen
in (b) matrix of Figure 2;

4) IQL demonstrates weak behavior in each game, due to
its inability to overcome relative overgeneralization;

5) KESL solves each of the environments in 20, 000 steps.
While, it is not immune to the increase in N or the
component sizes, it seems to provide significant boost
to flat QTRAN while still having the ability to large
components which prove hard for even CG.

As demonstrated by Figure 1, the performance gap between
QTRAN and KESL is significant. We investigate the source
of this difference by studying the structure of the learning
signal propagating back to individual agents for both the
flat and modular approaches in BUni4. The learning signal

Fig. 2: A typical final greedy policies in BDiv6 for all of
the methods. The x-coordinate is the agent id i, and the y-
coordinate the action id u. Agents 0-2 belong to fleet 0,
agents 3-5 to fleet 1 and agents 6-11 to fleet 2.

flowing back to individual agents i in QTRAN/KESL is:

gi =
∂(Lnopt + Lopt)

∂Qi
.

Since the environment requires agents within one component
to take same actions, and the actions need to be different
across different components to achieve the maximum reward,
successful methods must have similar gradients within group
but dissimilar across groups. To quantify the clustering, we
first cluster the gradients of each agent with k-means [17],
after which we compute the normalized mutual information
of predicted cluster labels:

NMI(Y ;C) =
I(Y ;C)

H(Y) +H(C)
,

where I denotes the Shannon mutual information, H the
Shannon entropy, Y the ground truth group/graph component
labels, and C the predicted cluster labels. Intuitively, NMI
quantifies the amount of information that is gained about
class label Y given the knowledge of the cluster label C, and
we expect it to be higher for modular methods as they explic-
itly consider the independencies between task components.
The intuition of gradients exhibiting task related structural
information is however piggybacking on the assumption that
the matching loss Lnopt + Lopt, has an accurate target Qjt
– thus we also compute the TD loss of the estimated joint

utility function to assess the stability of the learning signal
flowing back to the agents. As can be seen from Figure
3, KESL structuring improves the convergence of the joint
utility function noticeably, thus providing more stable targets
for the decomposable joint utility function Q′

jt. This leads
KESL agents to obtain more structured gradients resulting in
higher values for NMI of KESL in Figure 4, which translates
into better evaluation performance compared to QTRAN, as
shown in the center plot of Figure 1.

In conclusion, the experiments conducted in the Deadliest
Catch environments demonstrate that VFF approaches suffer
dramatically from the degradation of sample-efficiency as
the number of participating agents increases; if the task
structure allows for learning component-wise mixing, KESL
can significantly boost the learning speed over flat meth-
ods. The improvements in evaluation performance KESL
demonstrates over QTRAN are attributable to more sample-
efficient estimation of Qjt and more appropriately structured
learning signal. Furthermore, the performance of methods
estimating the underlying coordination graph by learning
pairwise factors can deteriorate substantially the cardinality
of the underlying graph components increases. KESL pro-
vides robustness against this kind of variation due to its lack
of assumptions on the edge cardinality.

Fig. 3: Log10 of the TD error for Qjt.

Fig. 4: NMI for the gradient clusters.

Agent Precinct Reward Factors
0 {0,1,2,3} {3}
1 {3,4,5,6} {3}
2 {4,7,8,9} {3,9}
3 {9,10,11,12} {9,12}
4 {12,13,14,15} {12}
5 {12,16,17,18} {12}

TABLE II: Precincts and reward factors agents belong to.

B. Generalized Firefighting

We benchmark instances of KASL against QTRAN in a
modified version of the Generalized Firefighting game (GFF)
[18] to study if approximate modularity can be utilized when
the original graph is not divisible into separate components,
as suggested in section III-B. The game consists of N = 6
firefighters fighting fires in |U| = 4 houses. In total there are
19 houses labeled with indices 0-18; only the houses 3, 9 and
12 are on fire. In contrast to the original GFF, we assume
that the fire in house number 9 is more dangerous than the
other two: extinguishing it requires at least 2 agents. The
modification is motivated by our interest in showing how our
proposed partitioning distance works with CGs whose factors
vary in their importance to the total utility. Let #(”house i”)
be the number of agents chosen to extinguish the fire at house
i; the reward associated with house 9 is

r9 =


2 if #(”house 9”) = 2

−2 if #(”house 9”) = 1

0 otherwise

For the other two burning buildings, reward is sub-additive:

ri = min{#(i), 1}+max{#(i)− 1, 0}/2, i ∈ [3, 12].

Table II shows the house numbers each agent is responsible
for, and which reward factor each agent belongs to. The left

Fig. 5: The factors for the burning buildings of the original
coordination graph H, q∗012 (house 3), q∗23 (house 9) and q∗345
(house 12) are shown on the left. H′

1, H′
2 and H′

3 are the
optimal factorizations for three different partitionings of H:
P1, P2 and P3, respectively.

graph in Figure 5 shows the ground truth CG H of the task.
H′

1, H′
2 and H′

3 are the best factorizations for partitionings
P1, P2 and P3, respectively. Using the optimal factorizations,
the partitioning distances as defined in section III-B are:

d(H,P1) ≤ ||q∗23 − q′∅||∞ = 2

d(H,P2) ≤ ||q∗012 − q′01||∞ = 0.75

d(H,P3) ≤ ||q∗012 − q′01||∞ + ||q∗345 − q′45||∞ = 1.5,

where ∅ denotes an empty set: given that q∗23 cannot be
estimated by the best factorization of P1, the factor error is
computed by finding the infinity norm of the cut edge. These
distances reflect the intuition that, as the reward component
corresponding to house 9 has a large variance and magnitude

relative to houses 3 and 12, P1, that is not able to represent
the factor q23, should induce the largest error amongst the
partitionings.

Fig. 6: Firefighting results for KASL with partitionings P1,
P2 and P3 and QTRAN.

Convincingly, the distance measure is aligned with the
empirical performance achieved by KASL – the lower it is,
the higher the final evaluation performance is. Figure 6 shows
the performance plots for QTRAN and KASL with each of
the partitionings. KASL with P1 gets stuck into suboptimal
behavior shown in Figure 7. This highlights the issue of
cutting the important q23 edge in H, as the learning processes
of agents 2 and 3 are separated, they cannot learn to
distinguish between coordinative and uncoordinative actions
and thus experience relative overgeneralization and learn to
fight fires in buildings 3 and 12, respectively. Surprisingly,
QTRAN gets stuck to suboptimal behavior similar to that of
KASL-P1. We suspect that the reason for this is simply the
learning speed: given that KASL is able to learn on more
compact set of agents, it is faster to learn the optimal policy,
provided a consistent value function to an optimal policy is
representable by the employed partitioning.

To summarize: in GFF, we demonstrate that the quality of
the applied partitioning influences the empirical performance
of the algorithm – important factors, that are highly impactful
to the total task return, must be represented accurately to
learn optimal decentralized policies. Furthermore, these tests
provide encouraging results implying that despite the non-
divisibility of the original CG, we can find useful disjoint
approximations using which we can boost VFF learning.

V. CONCLUSIONS AND FUTURE WORK

We have shown that injecting CG information to the value
function factorization by learning component-wise mixing
is helpful to increase sample-efficiency, providing stabler
learning signal compared to flat approaches. In cases where
underlying CG is not decomposable but still contains ap-
proximately separable partitions, we apply modularized VFF
on the partitioned graph retaining high performance. While
this work focuses on the evaluation of several competing
partitionings, we will extend the idea of the partitioning
distance metric to finding optimal partitionings. Such method
opens the door for deploying KASL to realistic multi-agent
environments where flat approaches are unusable.

Fig. 7: The x-coordinate is the agent id i, and the y-
coordinate the action id u - agent i taking u-th action
corresponds to agent i going to the u-th house in their
precinct specified in Table II. (Left) Optimal/typical behav-
iors of KASL-P2/P3, (Right) Common suboptimal behavior
demonstrated by QTRAN/KASL-P1; agent 2 takes action 0
(goes to house 3) and agent 3 takes action 3 (goes to house
12), which shows that the methods avoid the house 9 that
needs to be extinguished for the highest reward.

ACKNOWLEDGMENT
Funded by the German Federal Ministry of Education and
Research (BMBF) (Project: 01IS22078) and the project ’The
Third Wave of Artificial Intelligence – 3AI’ funded by the
Ministry for Science and Arts of the state of Hessen.

REFERENCES

[1] R. S. Sutton et al., Reinforcement learning: An introduction. MIT
press, 2018.

[2] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in ICML, 1993.

[3] F. A. Oliehoek et al., “Optimal and approximate q-value functions for
decentralized pomdps,” JAIR, 2008.

[4] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[5] P. Sunehag et al., “Value-decomposition networks for cooperative
multi-agent learning,” arXiv preprint arXiv:1706.05296, 2017.

[6] K. Son et al., “Qtran: Learning to factorize with transformation for
cooperative multi-agent reinforcement learning,” in ICML, 2019.

[7] C. Guestrin et al., “Multiagent planning with factored mdps,” NIPS,
2001.

[8] J. Boyan et al., “Packet routing in dynamically changing networks: A
reinforcement learning approach,” NIPS, 1993.

[9] D. Chen et al., “Powernet: Multi-agent deep reinforcement learning
for scalable powergrid control,” IEEE Transactions on Power Systems,
2021.

[10] W. Huang et al., “One policy to control them all: Shared modular
policies for agent-agnostic control,” in ICML, 2020.

[11] J. Castellini et al., “The representational capacity of action-value
networks for multi-agent reinforcement learning,” arXiv preprint
arXiv:1902.07497, 2019.

[12] W. Böhmer et al., “Deep coordination graphs,” in ICML, 2020.
[13] T. Wang et al., “Context-aware sparse deep coordination graphs,” arXiv

preprint arXiv:2106.02886, 2021.
[14] T. Phan et al., “Vast: Value function factorization with variable agent

sub-teams,” NIPS, 2021.
[15] M. Samvelyan et al., “The starcraft multi-agent challenge,” arXiv

preprint arXiv:1902.04043, 2019.
[16] C. Claus et al., “The dynamics of reinforcement learning in coopera-

tive multiagent systems,” AAAI/IAAI, 1998.
[17] H. Steinhaus et al., “Sur la division des corps matériels en parties,”

Bull. Acad. Polon. Sci, 1956.
[18] F. Oliehoek, Value-based planning for teams of agents in stochastic

partially observable environments. Amsterdam University Press,
2010.

