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Abstract— Synchronizing decisions across multiple agents in
realistic settings is problematic since it requires agents to
wait for other agents to terminate and communicate about
termination reliably. Ideally, agents should learn and execute
asynchronously instead. Such asynchronous methods also allow
temporally extended actions that can take different amounts of
time based on the situation and action executed. Unfortunately,
current policy gradient methods are not applicable in asyn-
chronous settings, as they assume that agents synchronously
reason about action selection at every time step. To allow
asynchronous learning and decision-making, we formulate a
set of asynchronous multi-agent actor-critic methods that allow
agents to directly optimize asynchronous policies in three stan-
dard training paradigms: decentralized learning, centralized
learning, and centralized training for decentralized execution.
Empirical results (in simulation and hardware) in a variety of
realistic domains demonstrate the superiority of our approaches
in large multi-agent problems and the effectiveness of our al-
gorithms for learning high-quality and asynchronous solutions.

I. INTRODUCTION

In recent years, multi-agent policy gradient methods using
the actor-critic framework have achieved impressive suc-
cess in solving a variety of cooperative and competitive
domains [1], [2], [3], [4]. However, as these methods assume
synchronized primitive-action execution over agents, they
struggle to solve large-scale real-world multi-agent problems
that involve long-term reasoning and asynchronous behavior.

Temporally-extended actions have been widely used in
both learning and planning to improve scalability and reduce
complexity. For example, they have come in the form of mo-
tion primitives [5], [6], skills [7], [8], spatial action maps [9]
or macro-actions [10], [11], [12]. The idea of temporally-
extended actions has also been incorporated into multi-
agent approaches. In particular, we consider the Macro-
Action Decentralized Partially Observable Markov Decision
Process (MacDec-POMDP) [13]. The MacDec-POMDP is
a general model for cooperative multi-agent problems with
partial observability and (potentially) different action dura-
tions. Agents can start and end macro-actions at different
time steps so decision-making can be asynchronous.

The MacDec-POMDP framework has shown strong scal-
ability with planning-based methods (where the model is
given) [14], [15], [16]. In terms of multi-agent reinforce-
ment learning (MARL), there have been many hierarchical
approaches, they don’t typically address asynchronicity since
they assume agents’ high-level decisions with a same du-
ration [17], [18], [19], [20]. Only limited studies consider
asynchronicity [21], [22], [23], yet, none of them provides
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a general formulation for multi-agent policy gradients that
allows agents to asynchronously learn and execute.

In this paper, we assume a set of macro-actions has
been predefined for each domain. This is well-motivated
by the fact that, in real-world multi-robot systems, each
robot is already equipped with certain controllers (e.g., a
navigation controller, and a manipulation controller) that can
be modeled as macro-actions [14], [16], [24]. Similarly, as it
is common to assume primitive actions are given in a typical
RL domain, we assume the macro-actions are given in our
case. The focus of the policy gradient methods is then on
learning high-level policies over macro-actions.

Our contributions include a set of macro-action-based
multi-agent actor-critic methods that generalize their
primitive-action counterparts. First, we formulate a macro-
action-based independent actor-critic (Mac-IAC) method.
Although independent learning suffers from a theoretical
curse of environmental non-stationarity, it allows fully online
learning and may still work well in certain domains. Second,
we introduce a macro-action-based centralized actor-critic
(Mac-CAC) method, for the case where full communication
is available during execution. We also formulate a centralized
training for decentralized execution (CTDE) paradigm [25]
variant of our method. CTDE has gained popularity since
such methods can learn better decentralized policies by
using centralized information. Current primitive-action-based
multi-agent actor-critic methods typically use a centralized
critic to optimize each decentralized actor. However, the
asynchronous joint macro-action execution from the central-
ized perspective could be very different with the completion
time being very different from each agent’s decentralized
perspective. To this end, we first present a Naive Independent
Actor with Centralized Critic (Naive IACC) method that
naively uses a joint macro-action-value function as the critic
for each actor’s policy gradient estimation; and then propose
a novel Independent Actor with Individual Centralized Critic
(Mac-IAICC) method that learns individual critics using
centralized information to address the above challenge.

We evaluate our proposed methods on diverse macro-
action-based multi-agent problems: a benchmark Box Push-
ing domain [23], a variant of the Overcooked domain [26]
and a larger warehouse service domain [23]. Experimental
results show that our methods are able to learn high-quality
solutions while primitive-action-based methods cannot, and
show the strength of Mac-IAICC for learning decentralized
policies over Naive IAICC and Mac-IAC. Decentralized
policies learned by using Mac-IAICC are deployed on real
robots to solve a warehouse tool delivery task in an efficient
way. To our knowledge, this is the first general formalization
of macro-action-based multi-agent actor-critic frameworks.



II. BACKGROUND

A. MacDec-POMDPs

Formally, a macro-action decentralized partially observ-
able Markov decision process (MacDec-POMDP) [13] is
defined by a tuple 〈I, S,A,M,Ω, ζ, T,R,O,Z,H, γ〉, where
I is a set of agents; S is the environmental state space;
A = ×i∈IAi is the joint primitive-action space over each
agent’s primitive-action set Ai; M = ×i∈IMi is the joint
macro-action space over each agent’s macro-action space
Mi; Ω = ×i∈IΩi is the joint primitive-observation space
over each agent’s primitive-observation set Ωi; ζ = ×i∈Iζi
is the joint macro-observation space over each agent’s macro-
observation space ζi; T (s,~a, s′) = P (s′|s,~a) is the en-
vironmental transition dynamics; and R(s,~a) is a global
reward function. During execution, each agent independently
selects a macro-action mi using a high-level policy Ψi :
HM
i ×Mi → [0, 1] and captures a macro-observation zi ∈

ζi according to the macro-observation probability function
Zi(zi,mi, s

′) = P (zi | mi, s
′) when the macro-action

terminates in a state s′. Each macro-action is represented as
mi = 〈Imi , πmi , βmi〉, where Imi ⊂ HM

i is the initiation set
of a macro-action based on macro-observation-action history
HM
i ; πmi : HA

i × Ai → [0, 1] is the low-level policy
for achieving a macro-action, and during the running, the
agent receives a primitive-observation oi ∈ Ωi based on the
observation function Oi(oi, ai, s) = P (oi|ai, s) at every time
step; βmi : HA

i → [0, 1] is a stochastic termination function
that determines how to terminate a macro-action based on
primitive-observation-action history HA

i . The objective of
solving MacDec-POMDPs with finite horizon H is to find
a joint high-level policy ~Ψ = ×i∈IΨi that maximizes the
value, V ~Ψ(s(0)) = E

[∑H−1
t=0 γ

tr
(
s(t),~a(t)

)
| s(0), ~π, ~Ψ

]
.

where γ ∈ [0, 1] is a discount factor.

B. Multi-Agent Actor-Critics with Primitive-Actions

The single-agent actor-critic algorithm [27] can be directly
adapted to multi-agent problems such that each agent in-
dependently learns its own actor and critic [2]. We con-
sider a variance reduction version of independent actor-
critic (IAC) with the policy gradient as: ∇θiJ(θi) =

E~π~θ
[
∇θi log πθi(ai|hi)

(
r+γV

πθi
wi (h′i)−V

πθi
wi (hi)

)]
. Due to

other agents’ policy updating and exploring, from any agent’s
local perspective, the environment appears non-stationary
which can lead to unstable learning of the critic without
convergence guarantees [3]. This instability often prevents
IAC from learning high-quality cooperative policies. To
address the above difficulties in IAC, centralized training for
decentralized execution (CTDE) provides agents with access
to global information during training while allowing agents
to rely on local information during execution. Independent
actor with centralized critic (IACC) [2], [3] is a typical
implementation of CTDE that trains a joint value function as
the centralized critic and use it to compute gradients w.r.t. the
parameters of each decentralized policy as: ∇θiJ(θi) =

E~π~θ
[
∇θi log πθi(ai | hi)

(
r + γV

~π~θ
w (x′) − V ~π~θw (x)

)]
where,

x represents the available centralized information (e.g., joint
observation-action history, or the true state).

C. Learning Macro-Action-Based Deep Q-Nets

Recently, macro-action-based multi-agent DQNs have
been proposed for MacDec-POMDPs [23]. For decentralized
learning, a new buffer, Macro-Action Concurrent Experience
Reply Trajectories (Mac-CERTs), is designed for collecting
each agent’s macro-observation, macro-action, and reward
information. In this buffer, the transition experience of each
agent i is represented as a tuple 〈zi,mi, z

′
i, r

c
i 〉, where

rci =
∑tmi+τmi−1
t=tmi

γt−tmi r(t) is a cumulative reward of the
macro-action taking τmi time steps to be completed from its
beginning time step tmi . In the training phase, a mini-batch
of concurrent sequential experiences is sampled, and each
agent independently squeezes its own trajectories by remov-
ing the transitions during each macro-action execution (i.e.,
removing time information), which produces a mini-batch of
transitions when the corresponding macro-action terminates.
Each agent’s macro-action-value function Qφi(hi,mi) is
updated only when a macro-action is complete by mini-
mizing a TD loss over the ‘squeezed’ data. For centralized
learning, the objective is to learn a joint macro-action-value
function Qφ(~h, ~m). To this end, a special buffer called
Macro-Action Joint Experience Replay Trajectories (Mac-
JERTs) is developed for collecting agents’ joint transition
experience at every time step and each is represented as a
tuple 〈~z, ~m, ~z ′, ~r c〉, where ~r c =

∑t~m+~τ~m−1
t=t~m

γt−t~mr(t) is a
shared joint cumulative reward from the beginning time step
t~m of the joint macro-action ~m to its termination, defined as
when any agent finishes its own macro-action, after ~τ~m time
steps. In each training iteration, the joint macro-action-value
function is optimized over a mini-batch of ‘squeezed’ (de-
pending on each joint macro-action termination) sequential
joint experiences via TD learning.

III. APPROACH

MARL with asynchronous macro-actions is more chal-
lenging as it is difficult to determine when to update each
agent’s policy and what information to use. Although the
macro-action-based DQN methods [23] give us the base
to learn macro-action value functions, they do not directly
extend to the policy gradient case, particularly in the case
of centralized training for decentralized execution (CTDE).
In this section, we propose principled formulations of on-
policy macro-action-based multi-agent actor-critic methods
for decentralized learning (Section III-A), centralized learn-
ing (Section III-B), and CTDE (Section III-C). We use hi to
represent an agent’s local macro-observation-action history,
and ~h to represent the joint history.

A. Macro-Action-Based Independent Actor-Critic (Mac-IAC)

Similar to the idea of IAC with primitive-actions, a
straightforward extension is to have each agent independently
optimize its own macro-action-based policy (actor) using a
local value function (critic). In our case, we learn a local
history value function V

Ψθi
wi (hi) via the decentralized way



mentioned in Section II-C as each agent’s critic and have
the corresponding policy gradient as:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)A(hi,mi)

]
(1)

A(hi,mi) = rci + γτmiV
Ψθi
wi (h′i)− V

Ψθi
wi (hi) (2)

where, the cumulative reward rci is w.r.t. the execution of
agent i’s macro-action mi.

B. Macro-Action-Based Centralized Actor-Critic (Mac-
CAC)

In the fully centralized learning case, we treat all agents
as a single joint agent to learn a centralized actor Ψθ(~m |
~h) with a centralized critic. Similarly, to achieve a lower
variance optimization for the actor, we learn a centralized
history value function V Ψθ

w (~h) by minimizing a TD-error
loss over joint trajectories squeezed in the centralized way
presented in Section II-C. Accordingly, the policy’s updates
are performed when each joint macro-action is completed by
ascending the following gradient:

∇θJ(θ) = EΨθ

[
∇θ log Ψθ(~m | ~h)A(~h, ~m)

]
(3)

A(~h, ~m) = ~r c + γ~τ~mV Ψθ
w (~h′)− V Ψθ

w (~h) (4)
where the cumulative reward ~r c is w.r.t. the execution of the
joint macro-action ~m.

C. Macro-Action-Based Independent Actor with Centralized
Critic (Mac-IACC)

In order to learn better decentralized macro-action-based
policies, we propose two macro-action-based actor-critic
algorithms using the CTDE paradigm. The difference be-
tween a joint macro-action termination from the centralized
perspective and a macro-action termination from each agent’s
local perspective gives rise to a new challenge: what kind
of centralized critic should be learned and how should it
be used to optimize decentralized policies where some have
completed and some have not, which we investigate below.

Naive Mac-IACC. A naive way of incorporating macro-
actions into a CTDE-based actor-critic framework is to
directly adapt the idea of the primitive-action-based IACC [2]
to have a shared joint value function V

~Ψ~θ
w (x) in each agent’s

decentralized macro-action-based policy gradient as:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)A(x, ~m)

]
(5)

A(x, ~m) = ~r c + γ~τ~mV
~Ψ~θ
w (x′)− V

~Ψ~θ
w (x) (6)

Here, the critic is trained in the fully centralized manner
described in section II-C while allowing it to access ad-
ditional global information (e.g., joint macro-observation-
action history, ground truth state or both) represented by
the symbol x. However, updates of each agent’s policy
Ψθi(mi | hi) only occur at the agent’s own macro-action
termination time steps rather than depending on joint macro-
action terminations in the centralized critic training.

Independent Actor with Individual Centralized Critic
(Mac-IAICC). Note that naive Mac-IACC is technically
incorrect. The cumulative reward ~r c in Eq. 6 is based on
the corresponding joint macro-action’s termination that is

defined as when any agent finishes its own macro-action,
which produces two potential issues: a) ~r c + γ~τ~mV

~Ψ~θ
w (x′)

may not estimate the value of the macro-action mi well as the
reward does not depend on mi’s termination; b) from agent
i’s perspective, its policy gradient estimation may involve
higher variance associated with the asynchronous macro-
action terminations of other agents.

To tackle the aforementioned issues, we propose to learn
a separate centralized critic V

~Ψ~θ
wi (x′) for each agent via TD-

learning. In this case, the TD-error for updating V
~Ψ~θ
wi (x′) is

computed by using the reward rci that is accumulated purely
based on the execution of the agent i’s macro-action mi.
With this TD-error estimation, each agent’s decentralized
macro-action-based policy gradient becomes:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)A(x,mi)

]
(7)

A(x,mi) = rci + γτmiV
~Ψ~θ
wi (x′)− V

~Ψ~θ
wi (x) (8)

Now, from agent i’s perspective, rci + γτmiV
~Ψ~θ
wi (x′) is able

to offer a more accurate value prediction for the macro-
action mi, since both the reward, rci and the value function

V
~Ψ~θ
wi (x′) depend on agent i’s macro-action termination. Also,

unlike the case in Naive Mac-IACC, other agents’ termina-
tions cannot lead to extra noisy estimated rewards w.r.t. mi

anymore so that the variance on policy gradient estimation
gets reduced. Then, updates for both the critic and the actor
occur when the corresponding agent’s macro-action ends and
take the advantage of information sharing.

IV. SIMULATION EXPERIMENTS

A. Domain Setup

We evaluate our algorithms over a variety of multi-
agent problems with macro-actions (Fig. 1): Box Push-
ing [23], Overcooked [26], and a larger Warehouse Tool
Delivery [23] domain. Macro-actions are defined using prior
domain knowledge as they are straightforward in these tasks.
We include primitive-actions into macro-action set (as one-
step macro-actions), which gives agents the chance to learn
more complex policies that use both when it is necessary.

Box Pushing (Fig. 1a). The optimal solution for the robots
is to cooperatively push the big box to the yellow goal area
for a terminal reward, but partial observability makes this
difficult. Robots have four primitive-actions: move forward,
turn-left, turn-right and stay. In the macro-action case, each
robot has three one-step macro-actions: Turn-left, Turn-
right, and Stay, as well as three multi-step macro-actions:
Move-to-small-box(i) and Move-to-big-box(i) navigate the
robot to the red spot below the corresponding box and
terminate with the robot facing the box; Push causes the
robot to keep moving forward until arriving at the world’s
boundary (potentially pushing the small box or trying to push
the big one). The big box only moves if both agents push
it together. Each robot can only observe the status (empty,
teammate, boundary, small or big box) of the cell in front
of it. A penalty is issued when any robot hits the boundary
or pushes the big box alone.



(a) BP (b) O-A (c) O-B (d) Recipe (e) WTD-A (f) WTD-B (g) WTD-C (h) WTD-D

Fig. 1: Experimental environments: Box Pushing (BP), Overcooked(O), and Warehouse Tool Delivery (WTD).

Overcooked (Fig. 1b - 1d). Three agents must learn
to cooperatively prepare a lettuce-tomato-onion salad and
deliver it to the ‘star’ cell. The challenge is that the salad’s
recipe (Fig. 1d) is unknown to agents. With primitive-actions
(move up, down, left, right, and stay), agents can move
around and achieve picking, placing, chopping and delivering
by standing next to the corresponding cell and moving
against it (e.g., in Fig. 1b, the pink agent can move right
and then move up to pick up the tomato). Each agent’s
macro-action set consists of: a) five one-step macro-actions
that are the same as the primitive ones; b) Chop, cuts
a raw vegetable into pieces when the agent stands next
to a cutting board and an unchopped vegetable is on the
board, otherwise it does nothing; c) long-term navigation
macro-actions: Get-Lettuce, Get-Tomato, Get-Onion, Get-
Plate-1/2, Go-Cut-Board-1/2 and Deliver, which navigate
the agent to the location of the corresponding object with
various possible terminal effects (e.g., holding a vegetable
in hand, placing a chopped vegetable on a plate, arriving at
the cell next to a cutting board, delivering an item to the star
cell, or immediately terminating when any property condition
does not hold, e.g., no path is found or the vegetable/plate is
not found); d) Go-Counter (only available in Overcook-B,
Fig. 1c), navigates an agent to the center cell in the middle
of the map when the cell is not occupied, otherwise, it moves
to an adjacent cell. If the agent is holding an object or one
is at the cell, the object will be placed or picked up. Each
agent only observes the positions and status of the entities
within a 5× 5 square centered on the robot.

Warehouse Tool Delivery (Fig. 1e - 1h). In each work-
shop (e.g., W-0), a human is working on an assembly task
(involving 4 sub-tasks that each takes a number of time steps
to complete) and requires three different tools for future sub-
tasks to continue. A robot arm (grey) must find tools for each
human on the table (brown) and pass them to mobile robots
(green, blue and yellow) who are responsible for delivering
tools to humans. Note that, the correct tools needed by each
human are unknown to robots, which has to be learned during
training in order to perform efficient delivery. A delayed
delivery leads to a penalty. We consider variants with two or
three mobile robots and two to four humans to examine the
scalability of our methods (Fig. 1f - 1h). We also consider
one faster human (orange) to check if robots can prioritize
him (Fig. 1g). Mobile robots have the following macro-
actions: Go-W(i), moves to the waypoint (red) at workshop
i; Go-TR, goes to the waypoint at the right side of the tool
room (covered by the blue robot in Fig. 1g and 1h); and Get-
Tool, navigates to a pre-allocated waypoint (that is different
for each robot to avoid collisions) next to the robot arm and
waits there until either receiving a tool or 10 time steps have
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Fig. 2: Decentralized learning and centralized learning with
macro-actions vs primitive-actions.

passed. The robot arm’s macro-actions are: Search-Tool(i),
finds tool i and places it in a staging area (containing at most
two tools) on the table, and otherwise, it freezes the robot
for the amount of time the action would take when the area
is fully occupied; Pass-to-M(i), passes the first staged tool to
mobile robot i; and Wait-M, waits for 1 time step. The robot
arm only observes the type of each tool in the staging area
and which mobile robot is waiting at the adjacent waypoints.
Each mobile robot always knows its position and the type of
tool that it is carrying, and can observe the number of tools
in the staging area or the sub-task a human is working on
only when at the tool room or the workshop respectively.

B. Results and Discussions

The metrics for a training trial is the mean discounted
return measured by periodically (every 100 episodes) testing
the learned policies over 10 episodes. We plot the average
performance of each method over 20 independent runs with
one standard error and smooth the curves over 10 neighbors.

Advantages of learning with macro-actions. We first
present a comparison of our macro-action-based actor-critic
methods against the primitive-action-based methods in fully
decentralized and fully centralized cases. In Fig. 2, the results
show significant performance improvements of using macro-
actions over primitive-actions. More concretely, in the Box
Pushing domain, reasoning about primitive movements at
every time step makes the problem intractable so the robots
cannot learn any good behaviors in primitive-action-based
approaches other than to keep moving around. Conversely,
Mac-CAC reaches near-optimal performance (dash-dot line),
enabling the robots to push the big box together. Unlike
the centralized critic which can access joint information,
even in the macro-action case, it is hard for each robot’s
decentralized critic to correctly measure the responsibility
for a penalty caused by a teammate pushing the big box
alone. Mac-IAC thus converges to a local-optima of pushing
two small boxes in order to avoid getting the penalty.

In the Overcooked domain, an efficient solution requires
the robots to asynchronously work on independent subtasks
(e.g., in scenario A, one robot gets a plate while another two
robots pick up and chop vegetables; and in scenario B, the
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Fig. 3: Comparison of macro-action-based asynchronous actor-critic methods.

right robot transports items while the left two robots prepare
the salad). This large amount of independence explains why
Mac-IAC can solve the task well, and indicates that using
local information is enough for robots to achieve high-quality
behaviors. Mac-CAC learns slower because it must figure
out the redundant part of joint information in much larger
joint macro-level history and action spaces than the spaces in
the decentralized case. The primitive-action-based methods
begin to learn, but perform poorly in such long-horizon tasks.

Advantages of having individual centralized critics.
In the Box Pushing task (the left two in the top row in
Fig. 3), Naive Mac-IACC (green) can learn policies almost
as good as the ones for Mac-IAICC (red) for the smaller
domain, but as the grid world size grows, Naive Mac-IACC
performs poorly while Mac-IAICC keeps its performance
near the centralized approach. From each agent’s perspective,
the bigger the world size is, the more time steps a macro-
action could take, and the less accurate the critic of Naive
Mac-IACC becomes since it is trained depending on any
agent’s macro-action termination. Conversely, Mac-IAICC
gives each agent a separate centralized critic trained with
the reward associated with its own macro-action execution.

In Overcooked-A (the third one at the top row in Fig. 3),
as Mac-IAICC’s performance is determined by the training
of three agents’ critics, it learns slower than Naive Mac-
IACC in the early stage but converges to a slightly higher
value and has better learning stability than Naive Mac-IACC
in the end. The result of scenario B (the last one at the
top row in Fig. 3) shows that Mac-IAICC outperforms other
methods in terms of achieving better sample efficiency, a
higher final return and a lower variance. The middle wall in
scenario B limits each agent’s moving space and leads to a
higher frequency of macro-action terminations. The shared
centralized critic in Naive Mac-IACC thus provides more
noisy value estimations, so that it performs worse with more
variance. Mac-IAICC, however, does not get hurt by such
environmental dynamics change. Both Mac-CAC and Mac-
IAC are not competitive with Mac-IAICC in this domain.

In the Warehouse scenarios (the bottom row in Fig. 3),
Mac-IAC (blue) performs the worst due to its natural limita-
tions and the domain’s partial observability. In particular, it
is difficult for the gray robot (arm) to learn an efficient way

to find the correct tools purely based on local information
and very delayed rewards that depend on the mobile robots’
behaviors. In contrast, in the fully centralized Mac-CAC
(orange), both the actor and the critic have global information
so it can learn faster in the early training stage. However,
Mac-CAC eventually gets stuck at a local-optimum in all
five scenarios due to the exponential dimensionality of joint
history and action spaces over robots. By leveraging the
CTDE paradigm, both Mac-IAICC and Naive Mac-IACC
perform the best in warehouse A. Yet, the weakness of Naive
Mac-IACC is clearly exposed when the problem is scaled
up in Warehouse B, C and D. In these larger cases, the
robots’ asynchronous macro-action executions (e.g., traveling
between rooms) become more complex and cause more
mismatching between the termination from each agent’s local
perspective and the termination from the centralized perspec-
tive. Therefore, Naive Mac-IACC’s performance significantly
deteriorates, even getting worse than Mac-IAC in Warehouse-
D. In contrast, Mac-IAICC can maintain its outstanding
performance, converging to a higher value with much lower
variance than others. This outcome confirms not only Mac-
IAICC’s scalability but also the effectiveness of having an
individual critic for each agent to handle variable degrees of
asynchronicity in agents’ high-level decision-making.

V. HARDWARE EXPERIMENTS

We also extend scenario A of the Warehouse Tool Delivery
task to a hardware domain. Fig. 4 shows the sequential
collaborative behaviors of the robots in one hardware trial.
Fetch was able to find tools in parallel such that two tape
measures (Fig. 4a), two clamps (Fig. 4b) and two electric
drills were found instead of finding all three types of tool
for one human and then moving on to the other which would
result in one of the humans waiting. Fetch’s efficiency is also
reflected in the behaviors such that it passed a tool to the
Turtelbot who arrived first (Fig. 4b) and continued to find
the next tool when there was no Turtlebot waiting beside it
(Fig. 4c). Meanwhile, Turtlebots were clever such that they
successfully avoid delayed delivery by sending tools one by
one to the nearby workshop (e.g., T-0 focused on W-0 shown
in Fig. 4b and 4d, and T-1 focused on W-1 shown in Fig. 4c),
rather than waiting for all tools before delivering, traveling



(a) (b) (c) (d)

Fig. 4: Collaborative behaviors generated by running the decentralized policies learned by Mac-IAICC where Turtlebot-0
(T-0) bounded in red and Turtlebot-1 (T-1) is bounded in blue. (a) After staging a tape measure at the left, Fetch looks for
the 2nd one while Turtlebots approach the table; (b) T-0 deliveries a tap measure to W-0 and T-1 waits for a clamp from
Fetch; (c) T-1 deliveries a clamp to W-1, while T-0 carries the other clamp and goes to W-0, and Fetch searches for an
electric drill; (d) T-0 deliveries an electric drill (the last tool) to W-0 and the entire delivery task is completed.

a longer distance to serve the human at the diagonal, or
prioritizing one of the humans altogether.

VI. CONCLUSION

This paper proposes a decentralized actor-critic method
(Mac-IAC), a centralized actor-critic method (Mac-CAC),
and two CTDE-based actor-critic methods (Naive Mac-IACC
and Mac-IAICC). These are the first approaches to be able to
incorporate controllers that may require different amounts of
time to complete (macro-actions) in a general asynchronous
multi-agent actor-critic framework. Empirically, our methods
can learn high-quality macro-action-based policies allowing
agents to asynchronously collaborate in large and long-
horizon problems. The practicality of our approach is vali-
dated in a real-world multi-robot setup based on a warehouse
domain. This work provides a foundation for future macro-
action-based MARL algorithm development, including meth-
ods which also learn the macro-actions.
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