
GPU Acceleration of Joint Multi-Agent Trajectory Optimization

Dipanwita Guhathakurta, Fatemeh Rastgar, M Aditya Sharma, Madhava Krishna and Arun Kumar Singh

Abstract— Joint multi-agent trajectory optimization is con-
ventionally considered intractable due to the exponential scaling
of the number of collision avoidance constraints and linear
increase in the number of variables by increasing the number
of agents. On the other hand, the joint formulation allows
access to more feasible space leading to better coordination
maneuvers. In this paper, we try to improve the scalability of
joint multi-agent trajectory optimization. Our core idea involves
breaking the joint problem into several decoupled smaller
quadratic programming (QP) problems and parallelizing them
over GPUs. We compare the performance of our optimizer
with the state of the arts in terms of trajectory quality and
computation time and show substantial improvement in both
metrics.

I. INTRODUCTION

Multi-agent trajectory optimization algorithms have at-
tracted a lot of attention in research communities due to their
wide range of applications in self-driving cars [1], search and
rescue [2], and exploration of large environments.

In multi-agent trajectory optimization, a team of agents
aims to find trajectories between their initial and final lo-
cations in a shared environment while satisfying conditions
such as avoiding collisions with obstacles and other mov-
ing agents in their environment [3]. There are two core
challenges in this regard: firstly, how to present a suitable
formulation of collision avoidance constraints, which are
known to be non-convex [4], and secondly, how to handle the
cooperation between agents in collision avoidance constraints
as the number of robots increases [5], [6]. While several ap-
proaches have been proposed to deal with collision avoidance
constraints and pair-wise cooperation among agents, they
can be broadly classified into two groups: centralized and
distributed.

A centralized optimization is an approach that computes
the trajectory of all robots together. Centralized optimization
can be categorized into sequential methods [7], [6] and
joint optimization methods [8], which compute trajectories
of agents sequentially and simultaneously, respectively. Cen-
tralized methods, particularly joint optimization approaches,
provide a rigorous treatment of the collision avoidance
constraints, but they often necessitate solving a large op-
timization problem and typically run offline. In addition,
since their computation time increases exponentially with the
number of agents, they become intractable for systems with
a large number of agents.

On the other hand, distributed methods such as distributed
model predictive control (DMPC) obtain the trajectory of
each robot decoupled from the others [9]. Distributed ap-
proaches are scalable for a large number of agents, and
they can run in real-time. But they may have a lower

success rate of collision avoidance, especially in obstacle-
rich environments, as the computed trajectories are only
based on the prediction of the other agents, not the actual
trajectories followed by the agents.

Our main motivation in this paper is to improve the com-
putational tractability of the joint variant of the multi-agent
trajectory optimization problem in the way that our optimizer
can find trajectories for tens of agents in a small fraction of
a second (≈ 0.15s for 32 agents). Since this improvement is
several orders of magnitudes faster than the existing methods
[10], [11], we can ensure that our algorithm is applicable for
not only computing global trajectories offline but also online
re-planning.

Our main idea is to break the joint multi-agent trajectory
optimization at each iteration into several smaller, distributed
sub-problems and solve them efficiently in parallel. The
author in [11] utilized a similar method and parallelized the
optimization problem over separate CPU threads. However,
due to the limited number of CPU cores and thread syn-
chronization issues, this parallelization is not scalable with
the number of agents [12]. Thus, in this paper, we aim to
parallelize trajectory optimization over GPUs. This, in turn,
requires bringing some key changes in the algebraic structure
of the problem and forms the main contribution of our work
as summarized below.

1) We break the joint multi-agent trajectory optimization
into several smaller distributed decoupled problems.

2) We reduce the decoupled sub-problems in the form of
special Quadratic Programming (QP) problems. Inter-
estingly, all the QPs associated with the decoupled sub-
problems have the same matrices, and only the vector
part of the QP changes across the problem instances.
We show how the solution process of such special QPs
can be easily parallelized over GPUs.

3) We compare the performance of our optimizers with
the state of the art [7], [8] in terms of computation
time and trajectory qualities, including smoothness cost
and arc length. For the first comparison, we show our
optimizer outperforms [7] in terms of trajectory quality
and computation time. For example, in the presence
of 16 agents, our computation time is at least 76%
lower than [7], and this gap even increases in more
crowded environments. Also, our optimizer has better
performance than [8] in all the mentioned performance
metrics.

The remainder of this paper is organized as follows. Some
preliminaries, background, and general problem formulation
are provided in Section II. The reformulated distributed

optimization problem and its analysis are proposed in Section
III. Benchmarks and statistical results are shown in Section
IV. Conclusion and future works are presented in Section V.

II. BACKGROUND AND PRELIMINARIES

This section defines symbols and notations used all over
the paper before representing the general problem formula-
tion. Then we review the existing literature about the current
problem.

A. Symbols and Notations
In this paper, the lower normal letters show the scalars.

The lower and upper bold cases represent vectors and
matrices, respectively. The left superscript k and the right
superscripts T stand for iteration index and the vector or
matrix transpose. The time dependency of the variable is
shown by t. The subscripts i and j denote the agent index.
np and nr show the number of planning steps and the number
of robots. The rest of the symbols will be defined in the first
place of use.

B. Problem Formulation
In this note, we address the trajectory optimization prob-

lem for a group of holonomic agents that aims to go from
an initial state t = t0 to a final state t = tf while optimizing
the squared norm of acceleration along x, y and z axis at
each time instant and avoiding collisions. By considering
the agents’ model as spheroids with dimensions (a, a, b), the
problem can be formulated as follows:

min
xi(t),yi(t),zi(t)

∑
t,i

(
ẍ2
i (t) + ÿ2

i (t) + z̈2i (t)
)
, (1a)[

xi(t),ẋi(t),ẍi(t),yi(t), ẏi(t), ÿi(t),zi(t),żi(t),z̈i(t)
]
t=t0
= bo,i, (1b)[

xi(t),ẋi(t),ẍi(t),yi(t), ẏi(t), ÿi(t),zi(t),żi(t),z̈i(t)
]
t=tf
= bf,i, (1c)

− (xi(t)−xj(t))
2

a2
−(yi(t)−yj(t))

2

a2
−(zi(t)−zj(t))

2

b2
+ 1 ≤ 0,

∀t, {i, j ∈ {1, 2, ..., nr}, j ̸= i}, (1d)

where, (xi(t), yi(t), zi(t)) represents the position of the ith

agent at timestamp t. The cost function (1a) minimizes the
acceleration along the x, y, z axis at each time instant for
all the agents. Initial and final boundary conditions, applied
on positions, velocities, and accelerations, are shown in (1b)
and (1c). The collision avoidance constraints among agents
can be formulated as inequality constraints (1d).

Solving (1a)-(1d) is complicated as the inequality con-
straints (1d) are non-convex. This complexity increases with
adding the number of agents to the environment as a result of
exponential increases in the number of inequality constraints.
For each agent, the trajectory along each motion axis can
be parameterized with nv decision variables at each time
instant. Now, by having np planning horizon steps and nr

agents, the number of decision variables in cost function and
collision avoidance constraints are nv ∗ nr and

(
nr

2

)
∗ np.

Different literature [13], [7], [6] have addressed the obstacle
avoidance (1d) in multi-agent trajectory optimization. Thus,
in the next subsection, we classify different existing methods
and propose our methodology.

C. Related Works
A simple approach to multi-agent trajectory optimiza-

tion problem (1a)-(1d) is to solve one large optimization
problem in which trajectories of all agents are computed
simultaneously [10], [14]. Augugliaro et al. in [10] refor-
mulates the trajectory optimization problem (1a)-(1d) as a
sequence of quadratic programs (QPs) by using first-order
Taylor expansion and linearizing the non-convex collision
avoidance constraints. Mellinger et al. in [14] rephrased (1a)-
(1d) as mixed-integer quadratic program (MIQP) problem
by applying integer constraints for obstacle avoidance. The
computation times of both [10], [14] scale poorly with an
increase in the number of agents. In our prior work [8],
we substantially improved the scalability of the joint multi-
agent trajectory optimization. In particular, we reformulated
the collision avoidance constraints in polar form and applied
the Alternating Direction Method of Multipliers (ADMM)
to the problem. In addition, we showed that our optimizer is
two orders of magnitude faster than [10].

Sequential optimizers solve the multi-agent trajectory op-
timization problem (1a)-(1d) by computing trajectories for
only one agent at a time [7]. For each planning step, each
agent considers other agents as dynamic obstacles and finds
its own collision-free trajectory. The dynamic obstacles are,
in fact, other agents whose trajectories have been computed
in the previous planning cycles. Since decision variables
belonging to only one agent are presented in each planning
cycle, the number of decision variables does not increase
with the number of agents. In sequential planning, the agent
that is considered latter on in the cycle has access to
lesser feasible space than agents that came before it. Thus,
sequential planning often run into infeasibility issues.

To improve the scalability issue, [11], [15] introduce
distributed optimizers that decouple the problem into sev-
eral smaller sub-problems. Distributed methods discard the
coupling among pair-wise collision avoidance constraints and
reduce the optimization problem to nr decoupled problems.
One way to get this decoupling is as follows: let each agent
predict other agents’ trajectories in the current iteration and
use this prediction for solving optimization problem in sub-
sequent iterations. If we denote the predicted trajectories by
(xj(t), yj(t), zj(t)), then the collision avoidance constraints
can be rewritten as:

− (xi(t)−xj(t))
2

a2
−
(yi(t)−yj(t))

2

a2
−(zi(t)−zj(t))

2

b2
+ 1 ≤ 0 (2)

Fig.1 shows how predictions of agent’s trajectories lead
to decoupled sub-problems. Various distributed multi-agent
optimizers utilize different prediction approaches [9], [11].
In this paper, similar to [11], we use precomputed trajecto-
ries from the previous iterations in our collision avoidance
constraints.

A common technique to speed up multi-agent trajectory
optimization is to leverage parallel architectures such as
CPUs and GPUs. Due to the ability to process arbitrary
numerical computations, CPUs can solve a batch of optimiza-
tion problems without changing the underlying numerical

Fig. 1. All the agents communicate their current trajectories. In the next iteration, each agent this prior communicated trajectories to form the collision
avoidance constraints at the next planning cycle. This in turn allows each agent to act independently. In other words, the communication strategy takes a
joint trajectory optimization problem (first block on the left) and converts it into nr decoupled problems. Our approach is GPU accelerated parallelized
solution of the decoupled sub-problems

algebra of the optimizer [11], [12]. However, as the number
of cores is limited in CPUs, they are not suitable for handling
a large batch size [16]. On the contrary, although GPUs are
only efficient for parallelizing primitive operations such as
summation and multiplication, they have many cores and can
be used to massively parallelize computations [16]. Thus, to
leverage the true potential of GPUs, we need to rewrite the
underlying numerical algebra of the optimizers in a suitable
form. Gradient Descent (GD) is one of the most well-known
methods for accelerating over GPUs since it boils down to
just matrix-vector multiplication [17]. However, GD typically
works poorly on constrained sub-problems and is sensitive
to hyper-parameters like weights, learning rate, etc [17].

III. METHOD

In this section, we present our main algorithmic result, an
efficient joint optimizer for multi-agent trajectory optimiza-
tion. We begin by stating a simple remark that will be useful
throughout the paper.

Remark 1: The time dependent variable xi(t) and its
derivatives can be parameterized using way-point parame-
terization as follows:xi(t1)

xi(t2)
. . .

xi(tn)

 = Pcxi ,

ẋi(t1)
ẋi(t2)
. . .

ẋi(tn)

 = Ṗcxi ,

ẍi(t1)
ẍi(t2)
. . .

ẍi(tn)

 = P̈cxi , (3)

where P is generated using time-dependent polynomial basis
functions and cxi

are coefficients associated with the basis
functions. Similar parametric representations can be applied
for yi(t) and zi(t) and their derivatives (see [18] for more
detail).

A. Overview

This section introduces an overview of our main idea. In
particular, we present a special class of QPs and how their
solution can be accelerated over GPUs. To this end, consider
(4)

min
ξi

(1
2
ξT
i Qξi + qT

i ξi

)
, st: Aξi = bi, i ∈ {1, 2, ..., nr} (4)

where ξi is the optimization variable required to be solved
for nr different QP problems. The QPs have a special struc-
ture consisting of the Hessian matrix, Q, and the equality
constrained matrix, A, are constant across the batches. This
feature helps us to reformulate the optimization problem as
a set of linear equations as (5)

[
Q AT

A 0

] [
ξi

µi

]
=

[
qi

bi

]
, ∀i ∈ {1, 2, ..., nr} (5)

where µi are the dual optimization variables. Since the
matrix in (5) does not depend on the batch index i, the

optimization variables for all batches can be computed in
parallel through (6).

[
ξ1 ... ξnr

µ1 ... µnr

]
=

matrix︷ ︸︸ ︷([
Q AT

A 0

]−1
) stacked vectors︷ ︸︸ ︷[

q1 q2 ... qnr

b1 b2 ... bnr

]
,

(6)

where | represents that the columns are horizontally stacked.
The solution (6) can be solved by multiplying a constant
matrix into a batch of vectors in parallel using off-the-shelf
libraries like JAX.

In the next section, we decribe how each decoupled sub-
problems shown in Fig.1 can be reformulated to have the
same structure as QP 4. As a result, all the sub-problems
can be solved in parallel and further the computations can
be reduced to GPU sutiable form presented in (6).

B. Distributed Optimization Problem Reformulation

By rewriting the collision avoidance constraints (1d) in
the polar form (see [8]-[18]), the ith decoupled sub-problem
shown in Fig. (1) can be formulated in the following manner.

min
xi(t), yi(t), zi(t),

dij(t), αij(t), βij(t)

∑
t

(
ẍ2
i (t) + ÿ2

i (t) + z̈2i (t)
)
, (7a)

[
xi(t),ẋi(t),ẍi(t),yi(t), ẏi(t), ÿi(t),zi(t),żi(t),z̈i(t)

]
t=t0
= bo,i, (7b)[

xi(t),ẋi(t),ẍi(t),yi(t), ẏi(t), ÿi(t),zi(t),żi(t),z̈i(t)
]
t=tf
= bf,i, (7c)

fc:

 xi(t)− xj(t)− adij(t) sinβij(t) cosαij(t) = 0
yi(t)− yj(t)− adij(t) sinβij(t) sinαij(t) = 0
zi(t)− zj(t)− bdij(t) cosβij(t) = 0

 , (7d)

dij(t) ≥ 1, ∀t, j, {j|j ∈ {1, 2, ..., nr}, j ̸= i} (7e)

where unknown variables αij(t), βij(t) and dij(t) need to
be computed. Intuitively, αij(t), βij(t) and dij(t) show the
ratio of the length of the line-of-sight vector and 3D solid
angles of the line of sight vector between agents i and j (see
[8]). Also, (xj(t), yj(t), zj(t)) are the jth agent’s predicted
position at time t.

Using Remark (1) and simplifying (7a)-(7e) by defining
ξ1,i = (cx,i, cy,i, cz,i), ξ2,i = αij , ξ3,i = βij and ξ4,i =
dij , the optimization problem can be written as:

min
ξ1,i,ξ2,i,ξ3,i,ξ4,i

(1
2
ξT
1,iQξ1,i

)
, (8a)

Aeqξ1,i = beq, (8b)
Fξ1,i = gi(ξ2,i, ξ3,i, ξ4,i), (8c)

ξ4,i ≥ 1, (8d)

where Q is a block diagonal matrix with elements P̈
T

P̈ in
the main diagonal and

Aeq =

[
A 0
0 A

]
,A =

[
P0|Ṗ0|P̈0|P−1|Ṗ−1|P̈−1

]T
,

F =

Fo 0 0
0 Fo 0
0 0 Fo

 , gi =

xj + adij sinβij cosαij

yj + adij sinβij sinαij

zj + bdij cosβij

 (9)

where, P1, Ṗ1, P̈1,P−1, Ṗ−1, P̈−1 represent the first and last
elements of the corresponding matrices. Fo is generated by
vertically stacking P, nr−1 times. Also, beq is generated by
stacking the initial and final boundary values, b0,i and bf,i,
respectively.

Remark 2: All the non-convex constraints (7d) are refor-
mulated as equality constraints (8c).

Now utilizing the Augmented Lagrangian Method, the
non-convex equality constraints (7d) are added as penalty
terms to our cost function (8a) in the following manner:

min
ξ1,i,ξ2,i,ξ3,i,ξ4,i

(1
2
ξT
1,iQξ1,i − ⟨λi, ξ1,i⟩

+
ρ

2

∥∥Fξ1,i − gi(ξ2,i, ξ3,i, ξ4,i)
∥∥2
2

)
(10)

The optimization problem (10) can be solved through
Algorithm 1 which will be explained in the next subsection.

Algorithm 1 Distributed Batch Optimizer Algorithm for the
ith Agent

1: Initialize kξ2,i,
kξ3,i and kξ4,i at iteration k = 0

2: while k ≤ max iteration or till norm of the residuals
are below some threshold do

3: Update k+1ξ1,i through

k+1ξ1,i=min
ξ1,i

(1
2
ξT
1,iQξ1,l −⟨

kλi, ξ1,i⟩

+
ρ

2

∥∥∥Fξ1,i − gi(
kξ2,i,

kξ3,i,
kξ4,i)

∥∥∥2
2

)
st.Aeqξ1 = beq (11)

4: Update k+1ξ2,i through

k+1ξ2,i=min
ξ2,i

(ρ
2

∥∥∥Fk+1ξ1,i− gi(ξ2,i,
k ξ3,i,

k ξ4,i)
∥∥∥2
2

)
(12)

5: Update k+1ξ3,i through

k+1ξ3,i=min
ξ3,i

(ρ
2

∥∥∥Fk+1ξ1,i− gi(
k+1ξ2,i, ξ3,i,

k ξ4,i)
∥∥∥2
2

)
(13)

6: Update k+1ξ4,i through

k+1ξ4,i=min
ξ4,i

(ρ
2

∥∥∥Fk+1ξ1,i−gi(
k+1ξ2,i,

k+1ξ3,i,ξ4,i)
∥∥∥2
2

)
(14)

7: Update Lagrange multiplier coefficient through
k+1λi=

kλi−ρ(Fk+1ξ1,i−gi(
k+1ξ2,i,

k+1ξ3,i,
k+1ξ4,i))F (15)

8: end while
9: Return k+1ξ1,i,

k+1ξ2,i,
k+1ξ3,i,

k+1ξ4,i

C. Distributed Batch Optimizer Solution Steps

Computing optimization variable ξ1,i: Since the opti-
mization problem (11) has a similar structure to (4) with Q =
Q + ρFT F and qi = −kλi − (ρFT gi(

kξ2,i,
kξ3,i,

kξ4,i))
T ,

it can be solved for all the agents in parallel and the exact
solution is given by (6).

Computing optimization variable ξ2,i: The problem for
computing optimization variable in (12) can be rewritten as
(6) by using (3) and updated optimization variable ξ1,i from
the previous step.

k+1αij = min
αij

ρ

2

∥∥∥∥∥∥∥∥∥∥

k+1x̃i︷ ︸︸ ︷
k+1xi − xj −akdij sin

kβij cosαij
k+1ỹi︷ ︸︸ ︷

k+1yi − yj −akdij sin
kβij sinαij

∥∥∥∥∥∥∥∥∥∥

2

2

(16)

where xj , yj are formed by stacking xj(t), yj(t) at different
time instants.

Although (16) is non-convex, the solution can be com-
puted using a geometrical intuition; the equation (16) can
be seen as a projection of

k+1

x̃i and
k+1

ỹi onto an axis-
aligned ellipse centered at origin with dimensions adij and
bdij . Thus, it can be reformulated as

k+1ξ2,i =
k+1αij = arctan 2(k+1ỹi,

k+1x̃i), (17)

Computing optimization variable ξ3,i: Similar to the
previous solution step, we update the ξ3,i in the following
manner

ξ3,i
k+1 = k+1βij = arctan 2(

k+1x̃i

a cos k+1αij
,
k+1z̃i

b
) (18)

Computing optimization variable ξ4,i: For given posi-
tions for the ith and jth agents, k+1dij are not only inde-
pendent from each other, but also independent at different
time instances. Thus, (14) splits into np ∗ (nr−1) decoupled
problems which can be solved analytically.

k+1ξ4,i =
k+1dij =

min
dij≥1

ρ

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

k+1x̃i︷ ︸︸ ︷
k+1xi − xj −adij sin

k+1βij cos
k+1αij

k+1ỹi︷ ︸︸ ︷
k+1yi − yj −adij sin

k+1βij sin
k+1αij

k+1z̃i︷ ︸︸ ︷
k+1zi − zj −bdij cos

k+1βij

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(19)

Remark 3: Computing optimization variables in (17)-(19)
does not require any matrix-matrix products or matrix fac-
torization. It only needs an element-wise operation, which
can be done for all the agents in parallel.

IV. BENCHMARKS

In this section, we validate the performance of our opti-
mizer and compare our results with the state-of-the-art [7]
and [8] in terms of computation time and trajectory quality
including smoothness and arc-length.

A. Implementation Details:

Simulations for this section are run on a desktop computer
with 32 GB RAM and RTX 2080 NVIDIA GPU. Also, to
accelerate linear algebraic computations on GPU, we run
our optimizers in Python using JAX [19]. Static obstacles
are modeled as agents with fixed zero velocities. The code
is available at https://github.com/susiejojo/
distributed_GPU_multiagent_trajopt.

Fig. 2. Trajectory snapshots for (A-C) 32 agents, with radius 0.3m and 20
obstacles of radius 0.4m, (D-F) 32 agents, with radius 0.3m and 8 randomly
placed obstacles of radius 0.4m, (G-I) 36 agents with radius 0.1m arranged
in a grid configuration are required to move to a line formation. Also, there
are 4 static obstacles with radius 0.15m.

B. Benchmarks

We tested our optimizer under the following benchmarks.

• The agents’ start and goal positions are sampled along
the circumference of a circle.

• The agents are initially located on a grid and are tasked
to converge to a line formation.

To show qualitative results, several configurations by
changing the number and position of agents and obstacles are
created. For example, Fig. (2)(A-I) illustrates three snapshots
of results with different agents, obstacles, and various initial
and final positions.

We conceptually validate the convergence of our optimizer
by plotting the constraints residual over iterations Fig. (3).
If these residuals have a decreasing trend over iterations and
converge to zero, trajectories are collision-free. Since this
trend is satisfied in Fig. (3), the trajectories returned by our
optimizer ensure the agents do not collide with each other
and obstacles.

Table I compares our optimizer with the state of the art
[7] and [8]. The distributed batch optimizer has the best
computation time in all the experiments, between 0.15s and
0.20s, and this time does not increase on increasing the
number of agents and obstacles. Our optimizer is in the
worst case is about two and four times faster than [7] and
[8]. By increasing the number of obstacles and agents, the
computation time gap between our optimizer and [7] and [8]
increases even further. For the case of 32 agents with 20

Fig. 3. Validating optimizer convergence empirically. Residuals ∥Fξ1,i −
gi∥ are averaged over all agents and across different benchmarks.

obstacles, [7] and [8] are around 60 and 6 times slower than
our optimizer, respectively.

In terms of arc-length, our algorithm and [7] are almost
similar and are at least 32% better than [8] for 16 agents.
For 32 agents, the distributed batch method provides slightly
shorter arc lengths than [8], and around 10% shorter than [7].

Compared with [7], the smoothness cost for the distributed
batch method achieves an average reduction of 35.86% and
59.06% for the 16 and 32 agents benchmarks, respectively.
Also, the smoothness cost for 16 agents shows at least 20%
improvement in comparison with [8]. For the case of 32
agents, our optimizer and [8] almost provide similar results.

TABLE I
COMPARISON OF OUR OPTIMIZER WITH [7] IN TERMS OF

COMPUTATION TIME, ARC-LENGTH AND SMOOTHNESS FOR 16
AND 32 AGENTS WITH DIFFERENT NUMBER OF OBSTACLES.

16 agents 32 agents
2
Obs

4
Obs

8
Obs

12
Obs

24
Obs

12
Obs

16
Obs

20
Obs

Comp. [8] 0.34 0.37 0.70 0.79 1.49 1.68 1.752 1.80
time ours 0.15 0.16 0.16 0.17 0.17 0.19 0.20 0.20

[7] 0.62 0.70 0.68 0.66 0.79 12.50 12.42 11.82
Arc- [8] 13.48 14.25 15.53 15.93 24.19 23.85 24.04 24.14
length ours 9.99 11.69 11.11 11.19 10.24 22.59 22.03 23.15

[7] 10.30 10.67 10.74 10.60 15.79 26.21 26.15 26.29
Smoothness [8] 0.10 0.11 0.14 0.15 0.16 0.15 0.16 0.17

ours 0.048 0.093 0.08 0.106 0.06 0.13 0.12 0.21
[7] 0.11 0.11 0.11 0.11 0.3 0.36 0.36 0.36

V. CONCLUSION AND FUTURE WORKS

By leveraging mathematical reformulations and GPU-
based parallelization, our optimizer computes trajectories for
tens of agents in cluttered environments within a fraction
of a second. In comparison with state-of-the-art baseline
approaches, we achieve improvement in terms of not only the
computation time, but also trajectory quality. Our approach
has the potential to be extended to non-holonomic multi-
agent systems such as cars, as well as for interaction-aware
trajectory prediction.

REFERENCES

[1] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848,
2019.

[2] J. Berger and N. Lo, “An innovative multi-agent search-and-rescue
path planning approach,” Computers & Operations Research, vol. 53,
pp. 24–31, 2015.

[3] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How,
“Multi-agent motion planning for dense and dynamic environments via
deep reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3221–3226, 2020.

[4] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based colli-
sion avoidance,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 972–983, 2020.

[5] S. Kandhasamy, V. B. Kuppusamy, and S. Krishnan, “Scalable decen-
tralized multi-robot trajectory optimization in continuous-time,” IEEE
Access, vol. 8, pp. 173 308–173 322, 2020.

[6] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in 2015
IEEE international conference on robotics and automation (ICRA).
IEEE, 2015, pp. 5954–5961.

[7] J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient multi-agent
trajectory planning with feasibility guarantee using relative bernstein
polynomial,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 434–440.

[8] F. Rastgar, H. Masnavi, J. Shrestha, K. Kruusamäe, A. Aabloo, and
A. K. Singh, “Gpu accelerated convex approximations for fast multi-
agent trajectory optimization,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3303–3310, 2021.

[9] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604–611, 2020.

[10] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in 2012 IEEE/RSJ international conference
on Intelligent Robots and Systems. IEEE, 2012, pp. 1917–1922.

[11] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-
passing algorithm for multi-agent trajectory planning,” Advances in
neural information processing systems, vol. 26, 2013.

[12] V. K. Adajania, A. Sharma, A. Gupta, H. Masnavi, K. M. Krishna,
and A. K. Singh, “Multi-modal model predictive control through
batch non-holonomic trajectory optimization: Application to highway
driving,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
4220–4227, 2022.

[13] J. Li, M. Ran, and L. Xie, “Efficient trajectory planning for multiple
non-holonomic mobile robots via prioritized trajectory optimization,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 405–412,
2020.

[14] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,”
in 2012 IEEE international conference on robotics and automation.
IEEE, 2012, pp. 477–483.

[15] T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of dis-
tributed optimization methods for multi-robot systems,” arXiv preprint
arXiv:2103.12840, 2021.

[16] K. Barkalov and V. Gergel, “Parallel global optimization on gpu,”
Journal of Global Optimization, vol. 66, no. 1, pp. 3–20, 2016.

[17] M. Hamer, L. Widmer, and R. D’andrea, “Fast generation of collision-
free trajectories for robot swarms using gpu acceleration,” IEEE
Access, vol. 7, pp. 6679–6690, 2018.

[18] F. Rastgar, A. K. Singh, H. Masnavi, K. Kruusamae, and A. Aabloo,
“A novel trajectory optimization for affine systems: Beyond convex-
concave procedure,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 1308–1315.

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, et al., “Jax: composable transformations of python+ numpy
programs,” Version 0.2, vol. 5, pp. 14–24, 2018.

