
Leveraging Quadrupedal Robots in Heterogeneous Multi-Robot
Teaming with Run-Time Disturbances

Ziyi Zhou1, and Ye Zhao1

Abstract— This work aims to establish a reactive planning
framework under both single- and multi-robot scenarios given
Linear Temporal Logic (LTL) specifications. The capabilities
of both quadrupedal and wheeled robots are leveraged via
a heterogeneous team to accomplish a variety of navigation
and delivery tasks. However, when deployed in the real world,
all robots especially the legged robots, can be susceptible to
different types of disturbances, including but not limited to
locomotion failures, human interventions, and environmental
changes. To address these run-time disturbances, we propose
task-level reallocation strategies to coordinate the robot teaming
online while guaranteeing the completion of the original task. A
locomotion-level reactive planner is designed for legged robots
to achieve the task-level goal in response to unexpected terrain
changes, which are not considered in the task-level.

I. INTRODUCTION

Mobile robots have been extensively investigated and
deployed in various service applications such as assembly
[1], surveillance, [2] and search and rescue [3]. Distinct
types of robots can form a heterogeneous team as shown
in Fig. 1 to compensate for their individual disadvantages.
Recent works on multi-robot systems have been focusing on
mission planning problems with the assistance of formal lan-
guages such as Linear Temporal Logic (LTL) [4]. Originally
proposed for model checking [5], LTL is a powerful tool used
in the robotics community with a preponderance of research
primarily conducted on wheeled robots [6], [7] and legged
robots [8]–[10] for task and motion planning. There have also
been works [6], [11]–[14] on multi-agent systems. However,
objectives are explicitly assigned to individual robots rather
than having one global specification. This can be challenging
for a large team of robots [15], [16], where in most cases,
a global task is simpler to define. Therefore, a simultaneous
task allocation and planning (STAP) problem given a global
LTL specification attracts more attention.

A line of research exists where STAP problems have
been solved with global LTL specifications. In [2], [17] a
product model is constructed with an exponential complexity,
while [18] proposed a team model automaton with a linear
complexity, assuming that each robot conducts its task in-
dependently. Other works also focused on advanced search
algorithms [15], [19], concrete time constraints [20], and
collaborative tasks [21]. However, failure recovery during
real-world deployment is rarely studied, especially con-
sidering unstructured environments such as rough terrain.
Single and multi-robot scenarios have been demonstrated

1The authors are with the Laboratory for Intelligent Decision and
Autonomous Robots, Woodruff School of Mechanical Engineering, Georgia
Institute of Technology. {zhouziyi, yzhao301}@gatech.edu.

Fig. 1: A multi-robot teaming consists of two turtlebots and a Mini Cheetah.

with disturbances caused by a change in the environment
[22]–[25] or a failure to perform an action [26], but all have
been limited to local LTL specifications. Therefore, task real-
location capabilities during the online execution is desirable
for STAP problems given global LTL specifications, which
is addressed in this study.

Meanwhile, quadrupedal robots have been popularized for
their superior traversability over unstructured terrains [27].
Nevertheless, even with exceptional locomotion capabilities,
legged systems are often unstable, fragile, and less suitable
for performing prolonged tasks compared to wheeled robots.
Although the aforementioned task reallocation can handle
run-time failures that are explicitly abstracted, a lower-
level planner is dispensable to allow robust locomotion
when following the task-level actions. Another set of LTL
specification can be designed only for a single legged robot
to ensure reasonable motion primitive switch in reaction to
unexpected terrain changes.

Our contributions are summarized as follows:

• In the task level, to handle potential disturbances, we pro-
pose local and global task reallocation approaches given
a global LTL specification. This approach eliminates the
need to reconstruct the entire team model or resynthesize
a new task.

• In the locomotion level, we propose a reactive locomotion
planner given a local LTL specification. A robot-centric
terrain map serves as an input to the planner, which
chooses an appropriate motion primitive such as walking
or jumping to robustly navigate dynamic environments.

• We evaluate our pipeline in a simulated hospital environ-
ment with a heterogeneous robot team consisting of both
quadrupedal and mobile robots. An open-source software
package1 is provided for the proposed reactive multi-robot
task allocation and planning framework.

1https://github.com/GTLIDAR/ltl multi agent.

https://github.com/GTLIDAR/ltl_multi_agent

Global LTL Planner

Transition
SystemN

Transition
System 1
Transition

System 1
Transition
System2

Transition
System 1

Product
AutomatonN

Transition
System 1
Transition

System 1
Product

Automaton2

Product
Automaton1

Locomotion
PlannerN

Transition
System 1
Transition

System 1
Locomotion
Planner2

Locomotion
Planner1

Behavior
TreeN

Transition
System 1
Transition

System 1
Behavior
Tree2

Behavior
Tree1

Sensing &
ControlN

Transition
System 1
Transition

System 1
Sensing &
Control2

Sensing &
Control1

Locomotion
Planner

Team Automaton

Topological
Map

Operating
States

Execution
Interface

Task
Executor

Global Task
Specification ϕ

Non-Deterministic
Finite Automaton

Offline

Initial Allocation / Global Reallocation
Human Inputs

Online

Fig. 2: An overview of the hierarchical planning framework. The global LTL planner portrays the high-level LTL task planner. Once the product automaton
is created, it is sent to the team automaton, where a sequence of actions are assigned to individual robots. During execution, the locomotion planner, the
behavior tree, and the hardware on the robot will react to disturbances and handle accordingly.

II. PRELIMINARIES

A. LTL basics

Linear temporal logic (LTL) has been widely used to
encode temporal task specifications and automatically syn-
thesize the system’s transition behaviors. A specification
ϕ is constructed from atomic propositions π ∈ Π, which
is evaluated to be True or False and follows the syntax
ϕ := π|¬ϕ|ϕ1∧ϕ2|#ϕ|ϕ1Uϕ2|ϕ1Rϕ2. Boolean operators ¬
“not” and ∧ “and” in addition to a set of temporal operators
“next”, U “until”, and R “release”, are denoted. To be
concise, we omit the derivations of other boolean operators
such as ∨ “or”, → “implies”, and ↔ “if and only if”, as well
as temporal operators 3ϕ “eventually ϕ” and □ϕ “always
ϕ”.

A common usage of LTL is for constructing an automaton.
A non-deterministic automaton (NFA) is defined as a tuple
Q = (SQ, S0,Q,Σ, δQ, F) such that SQ is a set of states
(sQ ∈ SQ), S0,Q ⊆ SQ is a set of initial state, Σ is the
input alphabet, δQ is a set of transition relations such that
δQ : SQ×Σ → 2SQ , and F is a set of accepting final states.
In addition, LTL formulas are evaluated over a sequence σ :
N → 2Π where σ(t) ⊂ Π represents all true propositions
at time t [28].

For this framework, a transition system (TS) is cre-
ated by combining data from the topological map and the
robots’ operating states. A TS is defined as a tuple T =
(ST , s0,T , AT ,ΠT ,L) such that ST is a set of system
states (sT ∈ ST), s0,T ∈ ST is the initial system state,
AT is a set of available system actions, ΠT is the set of
system propositions, and L : ST → 2ΠT is a labeling
function that assigns atomic propositions to states [15]. We
use Succ(sT) = {s′T ∈ ST |(sT , s′T) ∈ AT } to denote the
successors of sT and Pred(sT) = {s∗T ∈ ST |(s∗T , sT) ∈
AT } as the predecessors of sT . By combining a TS with an
NFA, a product automaton (PA) P composed of system states
and mission specifications is generated. It is represented by
P = Q ⊗ T = (SP , S0,P , AP) such that SP = SQ × ST
is the set of states (sP ∈ SP), S0,P = S0,Q × {s0,T } is
the set of initial states, and AP = {((sQ, sT), (s′Q, s′T)) ∈
SP × SP : (sT , s

′
T) ∈ AT ∧ s′Q ∈ δQ(sQ,L(sT))}.

B. Offline task allocation

We introduce the baseline task allocation method and ter-
minologies used throughout this paper. Readers are referred
to [18] for more details. Given the LTL semantics above, a
global task ϕ along with its corresponding NFA Q can be
specified for a whole team of N agents, each of which has its
own TS T (r) and a corresponding PA P(r) = Q⊗T (r), r =
{1, . . . , N}. Next, we will introduce a criterion that identifies
the decomposed parts of ϕ based on the assumption that each
agent executes its sub-task independently.

Definition 1 (Finite Decomposition [18]). Let Jr with r ∈
{1, . . . , N} be a set of finite LTL task specifications and
σi is any sequence s.t. σr |= Jr. These tasks are called
decomposition of the global finite LTL specification ϕ, iff:

σj1 . . . σjr . . . σjN |= ϕ (1)

for all permutations of jr ∈ {1, . . . , N} and all respective
sequences σr.

Based on this criterion, a decomposition set D ⊆ SQ
can be derived from Q, which includes all NFA states
that allocate tasks. Then the action-state sequence allocated
to each agent is computed by first constructing a team
automaton.

Definition 2 (Team automaton [18]). The team automaton
G is a union of N local PA P(r) with r ∈ {1, . . . , N} and
defined by G := (SG , S0,G , FG , AG), where:

• SG = {(r, sQ, sT) : r ∈ {1, . . . , N}, (sQ, sT) ∈ S
(r)
P }

is the set of states;
• S0,G = {(r, sQ, sT) : r = 1, (sQ, sT) ∈ S

(1)
0,P} is the

set of initial states;
• FG = {(r, sQ, sT) ∈ SG : sQ ∈ F} is the set of final

accepting states;
• AG =

⋃
r A

(r)
P ∪ ζ is the set of actions including switch

transitions ζ.

We use δG : SG → SG to denote the transitions corre-
sponding to AG . The set ζ ⊂ SG × SG denotes the switch
transitions, each of which ς = ((i, sQ, sT), (j, s

′
Q, s

′
T))

is defined as a transition between two states in G iff: 1)
j = i + 1: connects to the next agent; 2) sQ = s′Q: the

A1

DR

Wassi

(a) Offline allocation

A1

DR

Wassi

A1

(b) Online local reallocation (c) Online global reallocation

Case 1.1

Case 1.2

1. Unexpected
state change

2. Environmental
change

Case 2.1

Case 2.2

s ∈ S(r)
c,P Update initial

states to current

Reconstruct
switch transitions

Synchronization step
(before reallocation)

Add synchronized
transitions

Search for new
global sequence

Decomposition set D

Final accepting states F𝒢

Switch transition

Selected global
sequence

Executed path

New path

State jump

Path(r)(m)
Last matched
state

Path(r)(acc)
Local accepting
state

New init

Fig. 3: Conceptual illustrations of local and global reallocations: (a) offline allocation given the team automaton. A global sequence (the red lines with arrows)
is found during the offline phase as an initial task allocation. Assuming A1 undergoes a disturbance such as unexpected state change and environmental
change as shown in subfigure (b). In correspondence to Algorithm 1, Case 1.1 refers to a scenario where the new initial state after the state jump is on the
original offline-generated global sequence, while Case 1.2 corresponds to a completely new initial state and requires a replanning. Similarly in Algorithm
2, Case 2.1 demonstrates a scenario where the transition change doesn’t affect the execution of the original global path, while a replanning is required in
Case 2.2 due to a deleted edge on the original global path (represented by the cross marker). Subfigure (c) reveals a block diagram on the essential steps
for a global reallocation. The synchronization step notifies the planner of each agent’s current state (denoted by the yellow circle) and execution history
to proceed with the remaining steps. More details are explained in Sec. IV-C.

NFA state remains unchanged; 3) s′T = s
(j)
0,T : points to an

initial agent state; 4) sQ ∈ D: the NFA state is inside the
decomposition set.

The team automaton is a combination of every agent’s PA
P(r) 2 with additional switch transitions which can reassign
an agent’s remaining task to another agent. As illustrated
in Fig. 3(a), if a global action sequence β on the team
automaton is found, we can state that task allocation and
planning have been accomplished simultaneously (namely
STAP [18]). By projecting β onto the PA of each agent,
tasks can be executed in parallel. This process of finding
an initial set of action-state sequence is called the offline
allocation, whereas the state space complexity scales linearly
with the number of agents. The rest of this paper will
focus on addressing external disturbances during real-world
deployment.

III. PROBLEM FORMULATION

We first abstract the possible disturbances into multiple
classes. Unless specified, the following disturbances apply
to both legged and wheeled robots.
• Loss of balance refers to a scenario where a legged robot

falls due to an unstable gait or erratic controller output.
• Critical failure refers to an irrecoverable hardware or

software malfunction such as a damaged motor or a
software glitch.

• Unexpected robot state change refers to a situation where
a robot detects a sudden shift in the robot’s state.

• Environmental change refers to an environmental event
preventing the robot from continuing its current task. For
example, navigating from region A to region B might not
be feasible any more if the passage is blocked.

• Terrain change represents a height variation during loco-
motion by querying a 2.5D grid map centered around the
robot itself, which is only considered for legged robot.
To handle the above disturbances, we adopt a hierarchical

framework that handles each category of disturbance. For the

2For simplicity, we abuse P(r) to denote a sub-graph in G which contains
the same states S

(r)
P and transitions except, the robot index r is appended.

first four types of disturbances, we seek to find a reallocation
strategy that is specific to each category of disturbance. Two
aspects need to be investigated: 1) a formal guarantee to
complete the global task; 2) a set of completed tasks by the
whole team before a reallocation is triggered. To this end,
we define a STAP reallocation problem as the following:

Problem Statement. Given an initial task assignment and
the current TS of every agent, one finds a set of new action-
state sequences for the agents to accomplish the global task
without restarting the whole mission or re-synthesizing a new
mission.

To address the terrain change which requires a finer
abstraction of the environment, a reactive locomotion planner
is designed separately in a single-robot level. A set of local
LTL specifications that ensures a reliable transition between
different locomotion primitives is the other problem to be
solved in this work.

Fig. 2 shows the hierarchical architecture consisting of
1) a high-level task planner that performs offline allocation
and online reallocation; 2) a mid-level locomotion planner
to execute the assigned action plan for a legged robot while
ensuring robust locomotion given terrain changes; 3) low-
level monitoring using Behavior Tree (BT) and controllers
that power the actuators on legged and wheeled robots.

IV. MULTI-ROBOT REALLOCATION

To solve the STAP reallocation problem, we propose two
approaches: a local and global approach, both of which are
designed at the high level. Fig. 3(b) and 3(c) show the
workflow and conceptual examples of both local and global
reallocation. We consider two fundamental types of changes,
which are general enough to incorporate specific types of
abstracted disturbances.

A. Local reallocation addressing unexpected state changes

The offline task allocation process generates an action-
state sequence for each agent, which assumes every action
is performed successfully. During execution unexpected in-
terventions could occur, which would undermine the orig-

inal plan. For instance, if a human removes a load car-
ried by the robot before the robot reaches its destination,
an unforeseen robot state change occurs. To resolve this
intervention, we introduce the local task reallocation ap-
proach. Suppose Path(r) is a planned state sequence for
robot r, generated from the original team automaton. Let
Path(r)(acc) denote the agent’s local accepting state and
s△T be the current state after the intervention. By comparing
the state sequence execution history and Path(r), the last
matched state is identified as Path(r)(m), whose NFA
and TS are written as Path(r)

Q (m) and Path(r)
T (m). Thus,

Path(r)
T (m + 1) = s△T . Now, the problem is reformu-

lated to find a path on the local PA, starting from an
up-to-date initial set defined as S

(r)
c,P = {(r, sQ, sT) ∈

S
(r)
P |sT = s△T ,∀sQ ∈ δQ(Path

(r)
Q (m),L(Path(r)

T (m)))}.
The find-path method throughout this work is performed
by Dijkstra’s algorithm. Note that the original path can be
reused if the current state happens to be on the agent’s origi-
nal path. This local task reallocation approach is summarized
in Algorithm 1. Path(r)(i :) denotes a sub-path starting from
the ith element.

Algorithm 1 Local reallocation: unexpected state change
Input: P(r),Path(r)

Output: A new path Path(r)+

Path(r)+ ← empty path
Path-set(r) ← empty set
for s in S

(r)
c,P do

if s in Path(r) then
i← getIndex(Path(r)(s))
Path-set(r).append(Path(r)(i :))
continue

else
Path-set(r).append(find-path(s,Path(r)(acc)))

end if
end for
Path(r)+ ← find-best(Path-set(r))

B. Local reallocation addressing transition system changes

In the previous section, the disturbance shifts the robot’s
state but does not modify the transition between different
states, which will be addressed in this section. Such a
disturbance will directly impact the TS. For instance, if the
floor is occupied by an impassable object, the mobile robot
would encounter a navigation failure and would not be able
to transition to its next expected state. The critical failure can
also be understood as no transitions exist at current state. In
this case, the robot will receive the changes to be made on
TS called Info(t)(r). Each update contains three types of
information: 1) (sT , s′T) ∈ Add(t) if sT is allowed to transit
to s′T ; 2) (sT , s′T) ∈ Delete(t) if sT is not allowed to transit
to s′T ; 3) (b, sT) ∈ Relabel(t) if the labeling function of
state sT is updated to b ⊆ 2AP .

The TS change can be reflected by directly modifying the
team automaton using the PA revision strategy in [22]. When
a single agent r receives an update, the latest team automaton

is revised by only updating corresponding P(r)(t)3. All
deleted transitions, i.e., edges, are added into a set R(t).

Definition 3 (Updating rules). G(t) (more specifically, only
P(r)(t)) is updated given the Info(t) from agent r following
the rules:

• If (sT , s′T) ∈ Add(t), (r, snQ, s
′
T) is in δG((r, s

m
Q , sT))

for ∀snQ, smQ satisfying snQ ∈ δQ(s
m
Q ,L(sT));

• If (sT , s
′
T) ∈ Delete(t), (r, snQ, s

′
T) is deleted from

δG((r, s
m
Q , sT)) for ∀snQ, smQ ∈ S

(r)
Q ;

• If (b, sT) ∈ Relabel(t), then ∀s∗T ∈ Pred(sT):
(r, snQ, s

∗
T) is added to δG((r, s

m
Q , sT)) for ∀snQ ∈

δQ(s
m
Q , b); (r, snQ, s

∗
T) is deleted from δG((r, s

m
Q , sT))

for ∀snQ /∈ δQ(s
m
Q , b)

If a disturbance was detected on an agent’s TS, a new
type of task reallocation algorithm is necessary. Note that
no unexpected robot state is assumed in this case and the
last matched state is equivalent to the current state, i.e.
Path(r)

T (m) = s△T . Given the revised local PA P(r)(t),
we propose a different replanning approach in Algorithm 2,
compared to the one in Sec. IV-A.

Algorithm 2 Local reallocation: environmental change
Input: P(r)(t),Path(r), Info(t)
Output: A new path Path(r)+

Path(r)+ ← empty path
P(r)(t), R(t)← UpdatePA(P(r)(t), Info(t))
if R(t) ∩ edge(Path(r)) ̸= ∅ then
Path(r)+ ← find-path(Path(r)(m),Path(r)(acc))

else
Path(r)+ ← Path(r)(m :)

end if

C. Global reallocation

The two aforementioned local task reallocation approaches
do not consider replanning for the whole team, which results
in a sub-optimal strategy. Furthermore, if the local task real-
location fails to find a new plan for the agent, a succeeding
global task reallocation over the entire team is activated.
First, a synchronization step will be executed where the task
planner requests for each agent’s current TS state and sets it
to be the latest initial TS state s

(r)
0,T (t). Then the initial PA set

S
(r)
0,P(t) is updated accordingly by keeping S

(r)
0,Q the same.

Since each P(r)(t) has been updated during local reallocation
if needed, the team automaton is only modified by updating
the initial set of states and switch transitions, in addition to
appending the synchronized transitions.

Definition 4 (Synchronized team automaton). The synchro-
nized team model R := G(t) is a union of N prod-
uct automata P(r)(t) given the updated product states af-
ter synchronization, where r ∈ {1, . . . , N} and R :=
(SR, S0,R, FR, AR) consists of:

• SR = {(r, sQ, sT) : r ∈ {1, . . . , N}, (sQ, sT) ∈
S
(r)
P (t)} is the set of states;

3We use ·(t) to denote an updated automaton at time t given the transition
relation is changed.

• S0,R = {(r, sQ, sT) : r = 1, (sQ, sT) ∈ S
(1)
0,P(t)} is

the set of initial states;
• FR = {(r, sQ, sT) ∈ SR : q ∈ F} is the set of final

accepting states, which remains unchanged since the
NFA accepting states are fixed;

• AR =
⋃

r A
(r)
P (t) ∪ ζ(t) ∪ ξ(t) is the set of actions

that include the updated switch transitions ζ(t) and the
newly proposed synchronized transitions ξ(t).

Suppose ExePath(r) is the executed state sequence ac-
quired from each agent r and ExePath(r)

Q is the projected
NFA state sequence. The definition of a synchronized tran-
sition is as follows:

Definition 5 (Synchronized transition). The set ξ ⊂ SR ×
SR denotes synchronized transitions. Each element ε =
((i, sQ, sT), (j, s

′
Q, s

′
T)) satisfies:

• i = j: connects the same agent;
• sQ = ExePath(r)

Q (init), s′Q = ExePath(r)
Q (final),

r ∈ {1, . . . , N} starts from the initial NFA state and
points to the most recent NFA nodes upon request for
synchronization of each agent;

• sT = s′T : TS state is preserved.

This synchronized transition allows a new transition be-
tween two NFA states inside each agent’s P(r)(t). Once
this is complete, each agent will be aware of the task
completion status of the whole team and avoid performing
redundant tasks. In the original team automaton [28], the
four properties including correctness, independence, com-
pleteness, and ordered sequence are proposed to justify the
rationale of finding a global path on the team automaton for
a task allocation. Here we claim that our synchronized team
automaton preserves these properties, so that a new global
action sequence β can be found by applying the same search
algorithm performed during the offline phase (as presented
in Sec. II). This process leads to a global task reallocation
that assigns new sub-tasks to all agents.

V. PRELIMINARY RESULTS

A. Experiment set-up for simulation and hardware

To evaluate the feasibility and robustness of the proposed
multi-robot task allocation and planning framework, we first
establish a simulation of a hospital environment in Gazebo
[29] and create a topological map for defining the TS, as
shown in Fig. 4. The simulation architecture is composed of a
high-level LTL planning layer based on a ROS package from
[30], a mid-level execution interface using BehaviorTree.CPP
[31], and a low-level navigation and controller layer using
ROS navigation stack and appropriate controllers for each
robot model.

B. Case study

We evaluate our framework on a heterogeneous team of
robots consisting of a delivery robot DR, a walk training
robot Wassi, and a quadrupedal robot A1 with both capabili-
ties. A delivery robot consists of two simple operating states
(Loaded, Standby), where the Standby state is equivalent

Wassi

A1

DR

t

Homing

Homing

Homing

Obstacle Detected

Fig. 4: Topological map of a hospital environment consisting of locations
that are explicitly defined in each robot’s transition system. The execution
history for each robot is depicted for achieving global task ϕ under a
scenario where an unexpected garbage heap is detected. The timeline for
task execution and reallocation is illustrated at the bottom.

to Unloaded State. Likewise, a training robot consists of
4 operating states (Standby, Camera On, User Located,
Training), where the robot visually locates and helps seniors
who need walking training assistance. These operating states
are encoded into TS for each type of robot.

We conduct a series of case studies in a hospital environ-
ment simulation to evaluate the reactive strategies proposed
in Sec. IV. The global mission is defined as:

Scenario 1. “Deliver medicines to locations p3 and p6; meet
a patient at c1; complete a walk training along the corridor
between c1 and c6, and then send the patient back to p4.”

ϕ1 =3(p3 ∧ Standby) ∧□ ((¬ p3 ∧# p3) → Loaded)

∧3(p6 ∧ Standby) ∧□ ((¬ p6 ∧# p6) → Loaded)

∧3(p4 ∧ Standby) ∧□ ((¬ p4 ∧# p4) → Training)

∧3(c1 ∧ Training ∧3 (c7 ∧ Training ∧3 (c6 ∧ Tr

-aining ∧3 (c7 ∧ Training ∧3 (c1 ∧ Training)))))

Three robots, A1, DR and Wassi, are placed at various
locations in the hospital before the start of the simulation.
Next, the task planner decomposes the specification and
assigns sub-tasks to each robot offline, which takes 21
seconds in total. 92% of the computation time is taken by
the generation of PA for each robot, which only needs to be
performed once.

During the simulation, each robot will encounter a dis-
turbance. Since the integration with exteroceptive systems
is out of this paper’s scope, all the disturbances except

the locomotion failure are triggered by manually setting the
checkers in BT to be false. A diagram of this simulation is
displayed in Fig. 4.

1) External force is applied to A1 and induces a loss of
balance. A handcrafted whole-body recovery stand trajectory
is tracked by a PD controller to assist A1 to resume its task.

2) A critical failure is induced for Wassi when performing
the walk training task from c7 to c6. A global reallocation
strategy assigns A1 to complete its delivery task first, and
then proceeds to finish Wassi’s incomplete walk training task.

3) The Loaded state of DR suddenly becomes a Standby
state. This simulates a situation in which the robot unexpect-
edly loses its cargo. A local reallocation succeeds in instruct-
ing the robot to return to s1 and pick up another cargo. Then
DR is instructed to complete the original delivery task.

4) A garbage heap is placed in front of p3 to simulate an
environmental change. This obstruction can only be traversed
by the legged robot A1. The routes taken by each robot and
the timeline for obstacle detection and task allocation are
portrayed in Fig. 4. While performing its task, DR encounters
the obstruction and fails to find an alternate plan via local
reallocation. While A1 is returning home after completing
the delivery task to p6, it is assigned to take over DR’s
incomplete delivery task at c4. As a result, A1 goes to s1
to retrieve the object for delivery, and completes the task by
traveling to p3.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a heterogeneous, multi-robot task
allocation and planning framework equipped with a hier-
archically reactive mechanism from extensive disturbances.
A local and global task reallocation is performed at the
high level where an LTL-based team automaton is generated
to follow a formal guarantee. Future works include the
implementation of the proposed reactive locomotion planner
given terrain information, and the integration to the higher
level task planner.

REFERENCES

[1] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26, no. 3,
pp. 577–601, 2000.

[2] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and
robustness in multi-robot path planning with temporal logic constraints,” The
International Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.

[3] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and rescue with
a team of mobile robots,” in International Conference on Advanced Robotics.
Proceedings. IEEE, 1997, pp. 193–200.

[4] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic motion planning for
teams of underactuated robots using satisfiability modulo convex programming,”
in 2017 IEEE 56th annual conference on decision and control (CDC). IEEE,
2017, pp. 1132–1137.

[5] A. Pnueli, “The temporal logic of programs,” in Annual Symposium on Foun-
dations of Computer Science. IEEE, 1977, pp. 46–57.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive
mission and motion planning,” IEEE transactions on robotics, vol. 25, no. 6,
pp. 1370–1381, 2009.

[7] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit,
“Collision-free reactive mission and motion planning for multi-robot systems,”
in Robotics research. Springer, 2018, pp. 459–476.

[8] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion navigation
in partially observable environments with uneven terrain,” in IEEE Conference
on Decision and Control, 2020, pp. 958–965.

[9] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task and motion plan-
ning for robust whole-body dynamic locomotion in constrained environments,”
The International Journal of Robotics Research, p. 02783649221077714, 2022.

[10] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal logic
guided locomotion planning and control in cluttered environments,” in American
Control Conference. IEEE, 2020, pp. 5425–5432.

[11] M. E. Cao, J. Warnke, Y. Han, X. Ni, Y. Zhao, and S. Coogan, “Leveraging
heterogeneous capabilities in multi-agent systems for environmental conflict
resolution,” arXiv preprint arXiv:2206.01833, 2022.

[12] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under local
ltl specifications,” The International Journal of Robotics Research, vol. 34, no. 2,
pp. 218–235, 2015.

[13] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local ltl
specifications and event-based synchronization,” Automatica, vol. 70, pp. 239–
248, 2016.

[14] Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal control
synthesis algorithm for large-scale multi-robot systems,” The International
Journal of Robotics Research, vol. 39, no. 7, pp. 812–836, 2020.

[15] C. Banks, S. Wilson, S. Coogan, and M. Egerstedt, “Multi-agent task allocation
using cross-entropy temporal logic optimization,” in IEEE International Confer-
ence on Robotics and Automation. IEEE, 2020, pp. 7712–7718.

[16] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis, “Human
interaction with robot swarms: A survey,” IEEE Transactions on Human-
Machine Systems, vol. 46, no. 1, pp. 9–26, 2015.

[17] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal approach to
the deployment of distributed robotic teams,” IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 158–171, 2011.

[18] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of finite
ltl specifications for efficient multi-agent planning,” in Distributed Autonomous
Robotic Systems. Springer, 2018, pp. 253–267.

[19] P. Schillinger, M. Bürger, and D. Dimarogonas, “Multi-objective search for opti-
mal multi-robot planning with finite ltl specifications and resource constraints,”
in IEEE International Conference on Robotics and Automation. IEEE, 2017,
pp. 768–774.

[20] K. Leahy, A. Jones, and C.-I. Vasile, “Fast decomposition of temporal logic
specifications for heterogeneous teams,” arXiv preprint arXiv:2010.00030, 2020.

[21] X. Luo and M. M. Zavlanos, “Temporal logic task allocation in heterogeneous
multi-robot systems,” arXiv preprint arXiv:2101.05694, 2021.

[22] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning
under linear temporal logic specifications in partially known workspaces,” in
IEEE International Conference on Robotics and Automation. IEEE, 2013, pp.
5025–5032.

[23] M. Guo and D. V. Dimarogonas, “Reconfiguration in motion planning of single-
and multi-agent systems under infeasible local ltl specifications,” in 52nd IEEE
Conference on Decision and Control. IEEE, 2013, pp. 2758–2763.

[24] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking temporal
logic synthesis for uncertain environments,” in IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 5163–5170.

[25] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and motion
planning under temporal logic specifications,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 12 618–
12 624.

[26] J. Tumova, A. Marzinotto, D. V. Dimarogonas, and D. Kragic, “Maximally sat-
isfying ltl action planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014, pp. 1503–1510.

[27] P. Biswal and P. K. Mohanty, “Development of quadruped walking robots: a
review,” Ain Shams Engineering Journal, 2020.

[28] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task allocation
and planning for temporal logic goals in heterogeneous multi-robot systems,”
The international journal of robotics research, vol. 37, no. 7, pp. 818–838, 2018.

[29] OpenRobotics. (May) Hospital. Open Robotics. [Online]. Available: https:
//fuel.ignitionrobotics.org/1.0/OpenRobotics/fuel/collections/Hospital

[30] R. Baran, X. Tan, P. Varnai, P. Yu, S. Ahlberg, M. Guo, W. S. Cortez, and D. V.
Dimarogonas, “A ros package for human-in-the-loop planning and control under
linear temporal logic tasks,” in IEEE International Conference on Automation
Science and Engineering, 2021.

[31] D. Faconti and M. Colledanchise, “BehaviorTree.CPP,” 2019. [Online].
Available: https://github.com/BehaviorTree/BehaviorTree.CPP

https://fuel.ignitionrobotics.org/1.0/OpenRobotics/fuel/collections/Hospital
https://fuel.ignitionrobotics.org/1.0/OpenRobotics/fuel/collections/Hospital
https://github.com/BehaviorTree/BehaviorTree.CPP

