
Distributed Geometric and Optimization-based Control of Multiple
Quadrotors for Cable-Suspended Payload Transport

Khaled Wahba and Wolfgang Hönig

Abstract— We consider transporting a heavy payload that
is attached to multiple quadrotors. The current state-of-the-
art distributed geometric controller has several limitations: it
does not avoid collisions between the robots or obstacles and
there are almost no successful physical flights. We generalize
this controller by introducing an efficient quadratic program
for quadrotor load balancing, which can consider additional
constraints, such as collision avoidance or weight limits. Since
we optimize in the null-space of the prior work, we retain
the existing strong stability results. Moreover, we provide
an implementation that runs in real-time on an embedded
microcontroller at a high rate. Our code is also usable in our
software-in-the-loop (SITL) simulation. We demonstrate our
new controller both in simulation and on a physical team of
small quadrotors carrying a payload.

I. INTRODUCTION

Aerial vehicles can operate in places that are hard to
reach by other robots. As such, they are well suited for
collaborative assistance in a construction site, removal of
rubble in a search-and-rescue scenario, or decommissioning
of a nuclear power plant. Cable-driven payload transportation
using multi-UAVs are beneficial because they do not require
to carry manipulators or grippers onboard the quadrotors,
thus allowing to transport heavier objects [1], which makes
them in particular interesting to transport tools or sup-
plies [2].

The dynamics of such system can be described explicitly
through the interaction forces between the payload, cables
and the UAVs [1]. In general, the dynamics are expressed
using Newton’s equations of motion [3], [4], [5], while
augmenting the rotational dynamics of the UAVs [6].

There has been some advancement towards control al-
gorithms for payload collaborative transport. A Leader-
Follower paradigm has been proposed in several works [5],
[7]. These methods use the interaction forces between the
robots and the payload-cable system to ensure that the
follower robot would be compliant with the leader. Although
these methods do not require any communication between
the UAVs, the dependability over the leader is risky in
case of its failure. Other methods depend on constructing
a cascaded design for the control law using either force [5],
[6] or kinematic analysis [8] to provide control over the
payload. In particular, the authors in [6], [9] introduced a

The authors are with TU Berlin, Germany. {k.wahba,
hoenig}@tu-berlin.de.

Code: https://github.com/IMRCLab/pyCrazyflie, and https://github.com/
IMRCLab/crazyswarm2/tree/col-trans.

Video: https://youtu.be/yLbzvuXErXY
The research was funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) - 448549715.

q1

q2

q3

Inertial Frame

robot 1

robot 2

robot 3

Payload
Frame

m0

Payload of mass

Fig. 1. Three quadrotors carrying a point mass payload.

geometric cascaded controller on SE(3) for cable-driven
payload transportation using multi-UAVs. The cascaded de-
sign allows the controller to compute the control input of
each UAV given a reference trajectory for the payload. The
stability of the controlled full dynamics is studied through
Lyapunov analysis and it shows that the zero equilibrium
of the tracking errors is exponentially stable. A recent pa-
per [10] includes a simulator, an open-source implementation
of one the controllers [6], and some real world experiments
using their framework with different payloads. However,
the cascaded structure imposes challenges in practice. The
method requires either the measurement or estimating the
accelerations of the payload, which is impractical due to the
induced noise from both methods. Moreover, the controller is
not designed to avoid robot/robot collision or cable tangling.

In this paper, we address these shortcomings by aug-
menting the existing controllers [6], [9] with (quadratic)
optimization, while retaining the existing stability results.
Moreover, unlike [6], [9], we demonstrate our approach in
physical test flights. Unlike the previous work [10], our
simulator supports software-in-the-loop simulation and our
efficient embedded controller implementation in C can be
executed on significantly smaller UAVs in real-time.

II. BACKGROUND

A. Single Quadrotor Dynamics

The dynamics of a single multirotor is modeled as a
6 degree-of-freedom floating rigid body with mass m and
diagonal moment of inertia J. The single quadrotor’s state

https://github.com/IMRCLab/pyCrazyflie
https://github.com/IMRCLab/crazyswarm2/tree/col-trans
https://github.com/IMRCLab/crazyswarm2/tree/col-trans
https://youtu.be/yLbzvuXErXY

comprises of the global position p ∈ R3, global velocity
v ∈ R3, attitude rotation matrix R ∈ SO(3) and body
angular velocity ω ∈ R3. The dynamics can be expressed
using Newton-Euler [11] equations of motion as follows

ṗ = v, mv = mg +Rfu, (1a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τu, (1b)

where S(·) is a skew-symmetric mapping; g = [0; 0;−g]
is the gravity vector; fu = [0; 0;T] and τu = [τx; τy; τz].
Denote the total wrench vector applied on the center-of-mass
(CoM) of the quadrotor’s body as η = [T ; τx; τy; τz]. Where
η is linearly related to the squared motor rotational rate (i.e.,
propeller speed) for m motors, where ωm = [w2

1; . . . ;w
2
m].

Such that η = B0ωm, where B0 is the actuation matrix [11].

B. Full System Dynamics

Consider a team of n quadrotors that are connected to
a payload through massless cables (see Fig. 1). In the
following, we summarize results presented in [6], [9] using
our own notations for clarity. Throughout this work, the
variables related to the payload are denoted by the subscript
0, and the variables for the i-th quadrotor are denoted by
the superscript i such that i ∈ {1, . . . , n}. The payload is
described as a rigid body with mass m0 and moment of
inertia matrix J0. The cables are assumed to be always taut
(i.e., modeled as rigid rods) each with length li. The states
of the full system can be described as the global position
p0 ∈ R3 and the velocity ṗ0 ∈ R3 of the payload; the
attitude rotation matrix R0 ∈ SO(3) and the body angular
velocity w0 ∈ R3 of the payload; the unit directional vector
qi ∈ R3 and the angular velocity ωi ∈ R3 of each i-th
cable, where qi points from quadrotor i towards the payload.
Hence, the state space has dimension 13 + 6n.

Without loss of generality, consider the payload to be a
point mass model with mass m0. Given the states of the full
system, the position of each quadrotor can be described as
pi = p0 + liqi. Thus, the kinematics of the full system is
described as

q̇i = ωi × qi, ṗi = ṗ0 + liq̇i. (2)

While the dynamics of the full system can be simply ex-
pressed using Euler-Lagrange equations.

C. Control Design

1) Single Quadrotor: Consider a single quadrotor control
problem: given a tuple reference trajectory ⟨pr, ṗr, p̈r,ψr⟩
for the quadrotor CoM, where pr and ψr are the position
and the heading of the quadrotor, respectively. We need a
controller that tracks this reference trajectory. The controller
in [12] is developed for the single quadrotor case. The
controller consists of 2-loop cascaded design, where the outer
loop computes the desired force control vector, which then
computes T and the desired third body z-axis zd. Thus, using
differential flatness along with the the reference heading ψr,
the desired rotational states are computed and τu tracks those
desired values [11], [12].

2) Control Design for Rigid Body Payload: In order to
achieve a controller for multi-UAVs transporting a shared
payload (dynamics as defined in Section II-B), the single
control design is not applicable for this case, as it cannot
guarantee that the payload will follow a given reference
trajectory. Moreover, the single controller will not be able
to maintain the cables to be always in a taut mode.

The state-of-the-art controller [6] solves the multi-UAVs
shared payload transportation problem, where the control
problem is defined as follows. The output is a tuple reference
trajectory ⟨p0r

, ṗ0r
, p̈0r

,R0r ,ω0r ⟩, where p0r ,R0r ,ω0r are
the position, rotation matrix and angular velocity of the pay-
load, respectively. The output is a collaborative/centralized
controller that computes the motor signals to track this
reference trajectory.

This controller consists of a 4-loop cascaded design. The
first step in the first loop computes the desired resultant
control forces, Fd, and torques, Md, of the payload to track
the payload reference trajectory. Let the control force applied
by each i-th quadrotor on its cable be ui = Rifui . Denote
that u

∥
i ∈ R3 and u⊥

i ∈ R3 are the orthogonal projection
of ui along qi and to the plane normal to qi, respectively,
i.e., ui = u

∥
i + u⊥

i . Then, the first loop outputs the desired
cable unit directional vectors qid in order to achieve Fd and
Md. Let µid

be the desired i-th cable force and P ∈ R6×3n

be a matrix that maps the forces and torques of the payload
CoM to µid

. The linear relation between µid
and Fd,Md is

defined as

P
[
(RT

0 µ1d
)T . . . (RT

0 µnd
)T

]
=

[
(RT

0 Fd)
T MT

d

]
.

(3)
For any Fd, Md, there exists at least one solution for µid

,
e.g., the minimum-norm solution

µid
= diag[R0, . . . ,R0]P

T (PPT)−1

[
RT

0 Fd

Md

]
(4)

Then, we compute qid using µid
by applying the definition

qid =
µid

||µid
||
. (5)

The second loop computes the control force ui applied
by each quadrotor on the payload. In particular, u∥

i is first
computed by projecting µid

on the current cable force
vector µi, in addition to non-linear terms that linearize the
translational dynamics of the payload. In other words, when
µi → µid

, then Fd,Md are tracked. In order to track the
desired cable forces µid

, then u⊥
i is also used, which is

responsible to track the desired cable forces µid
by tracking

the desired unit directional vector, i.e., qi → qid , of the
cables. It is straightforward to verify that when qi = qid

then the resultant force and moment acting on the payload
become identical to their desired values.

After computing ui vector, it is used in the third loop
that outputs the thrust magnitude T (i.e., fu) and the desired
third body vector zd. Thus, using differential flatness, we can
define the desired rotation matrix and its derivatives. Finally,
the fourth loop is responsible to compute τu to track the
desired attitude values (i.e., attitude controller).

3) Control Design for Point Mass Payload: We now
consider a special case for the model of the payload to be a
point mass. Then, only the translational dynamics of the full
model are relevant and Eq. (3) is reduced to

P
[
µT

1d
. . . µT

nd

]T
= Fd. (6)

Another solution for the point mass model [9], requires a
reference trajectory for the cable directions qid as additional
input and offers two modes. The first mode is Relative
Formation Control, which is similar to virtual structure ap-
proaches in formation control and only works if n ≥ 1. The
second mode is Inertial Formation Control and only usable
with more than two quadrotors. Then the desired directions
of the cables are defined by smooth curves qid ∈ S2. Thus,
the computation of u

∥
i and u⊥

i are the same as the rest of
the state-of-the-art controller for the rigid payload case.

III. APPROACH

The baseline controller [6] for a rigid body payload ex-
hibits certain challenges and issues. In particular, while track-
ing the reference trajectory for the payload, this controller
does not take the size of the payload into account. If the
payload’s size is small compared to the cable lengths, then
collision between the quadrotors might occur, or cables might
tangle. Moreover, the baseline does not consider required
formation changes between configurations while tracking the
payload’s reference trajectory, which might cause collisions
between the quadrotors and obstacles during loading or
unloading of the payload. In other words, this baseline
controller includes neither inter-robot nor robot/obstacle col-
lision avoidance.

The authors had prior work on a similar class of problems,
where the model of the payload was assumed to be a point
mass [9], and this controller allows to design a reference
trajectory for the cable direction qid , which can be used to
avoid inter-robot collisions. However, it will be susceptible
to other problems which the controller is not designed to
handle. While a desired formation can be provided for
the team of robots, there is no guarantee that the load
distribution is feasible over the cables and the UAVs while
also keeping the quality of the trajectory tracking. In fact,
the tracking quality might degrade if the formation is close
to singularity formations [8] and thus the full system might
become unstable. Moreover, the designed desired forces to
be applied by the UAVs on the cables cannot be limited in
magnitude, which might cause stability loss due to actuation
limits.

Finally, the baseline and its prior work support homoge-
neous systems only and do not consider heterogeneous team
members for the multi-UAVs payload transportation class of
problems. By heterogeneous we refer to differences of team
members in robot type (multirotor or fixed wing), size, or
sensing capabilities.

A. Problem Description

Consider n quadrotor that are transporting a rigid
body payload with massless cables of length li.

Given a reference trajectory tuple for the payload
⟨p0r (t), ṗ0r

(t), p̈0r
(t),R0r (t),ω0r (t)⟩, where t ∈ [t0, tf]

and p0r ,R0r ,ω0r are the position, rotation matrix and
angular velocity of the payload, respectively. Our objective
is to find the optimal control input of each quadrotor ηi

that minimizes the error between the states of the payload
and the reference trajectory, while respecting the dynamic
model of the full system, the quadrotors avoid collision
with themselves and the obstacles. Formally:

min
ηi

||p0r (t)− p0(t)|| (7)

s.t.

Ẋ = f(X ,ηi)

ηi ∈ U (i)

pi(t) ∈ W(i)
free, i ∈ {1, . . . , n}

,

where the equality constraint represents the dynamic model
(Section II-B); the second equation is the control input of
each i-th quadrotor ηi that must belong to its control space
U (i); and the final constraint represents the collision-free
workspace W(i)

free where it is defined disjointly for each i-th
quadrotor and it includes the inter-robot collision constraints.

While Eq. (7) is a centralized formalization, we are only
interested in distributed solutions, which means that each i-
th quadrotor runs the optimization program to solve for its
own control input ηi. In addition, the optimization problem
is running online for each time step.

We make the following assumptions. In terms of modeling,
it is assumed that the cables are always in taut mode (i.e.,
they are modeled as massless rigid rods with a predefined
length li). It is beneficial for the collision-free space to
belong to a convex workspace to be able to present faster
solutions from the optimization program. For this paper, we
assume that the constraints are provided as user input in form
of hyperplanes or to be precise half-spaces. A hyperplane H
in Rd can be formulated by a normal vector n and an offset
a as H = {x ∈ Rd | nTx + a = 0}. A half-space H̃ in Rd

is a subset of Rd that is bounded by a hyperplane such that
H̃ = {x ∈ Rd | nTx+ a ≤ 0}.

B. Quadratic Optimization Problem

The baseline considers n quadrotor that are connected to
a payload with massless cables. Given a reference trajectory
tuple ⟨p0r (t), ṗ0r

(t), p̈0r
(t)⟩ for a point mass payload, our

objective is to track this reference trajectory while taking
into account the mentioned problems.

One major issue is caused by the design choice for qid . Let
us consider the solution provided in the rigid payload case
for computing µid

to be applied to the point mass case. It
is clear that minimum-norm solution of Eq. (6) will provide
a solution for µid

. In fact, the minimum-norm solution is
generated by solving the optimization problem

min
µid

1

2
||µid

||2 (8)

s.t.
{
P
[
µT

1d
. . . µT

nd

]T
= Fd .

However, the proposed solution presented for the desired
cable forces will not be valid in practice for the point mass
case. Since the minimum-norm solution does not take into
account a proper formation for the UAVs, this will lead to
inter-UAV collision.

Consequently, it makes sense to use the null-space of
the minimum-norm solution for the desired cable forces
vector. In particular, we generalize our approach by adding
additional (hard) constraints to the optimization problem.
Thus, our approach uses a Quadratic Optimization Prob-
lem (QP) formulation for efficiently solving the inter-UAV
collision problem while tracking the reference trajectory with
a feasible formation for the quadrotor. In particular, we
extend Eq. (8) as follows

min
µid

1

2
||µid

||2 (9)

s.t.

P
[
µT

1d
. . . µT

nd

]T
= Fd

nT
1 . . . 0

0
. . . 0

0 . . . nT
m

µ1d

...
µnd

+

a1
...

am

 ≤ 0m×1

,

where ni ∈ R3×1 and ai ∈ R3×1 for i ∈ 1, . . . ,m define a
half-space and m is the number of hyperplanes with m ≥ n.

Our QP formulation is presented for the point mass
payload case, however, it can be generalized and extended
easily to the rigid case with minor changes. In particular,
the first change to be considered is the provided reference
trajectory tuple. It must be augmented with a rotational
reference trajectory for the attitude dynamics of the rigid
payload. Consequently, the desired virtual moments Md

must be computed. Finally, the last change to be considered
is the equality constraint in Eq. (9) must be substituted
with Eq. (3). Moreover, the proposed approach will solve the
inter-UAV collision problem and cable tangling whenever the
rigid payload is small in size.

IV. EXPERIMENTS

To validate the functionality of our proposed methodology,
we now present the results of simulation comparing between
our approach with the state-of-the-art baseline [6] as well
as experimental results on physical team of two quadrotors
transporting a point mass payload.

A. Target Platform

In order to test our approach, we use quadrotors of type
Bitcraze Crazyflie 2.1 (CF). These are small (9 cm rotor-to-
rotor) and lightweight (34 g) products that are commercially
available. The physical parameters are identified in prior
work [13]. Our controller and an extended Kalman filter
are running on-board the STM32 microcontroller (168MHz,
192 kB RAM). The control algorithm implemented on-board
is written using the C (99) language.

B. Simulation

1) Simulator Development Process: We found that an
iterative development method reduces challenges regarding
the sim-to-real gap. We developed and tuned our approach
through three stages.

In the first stage, we implement our experiments in sim-
ulation to present our results using only Python. We start
with the dynamic model of a single quadrotor and a state-
of-the-art single UAV controller [12]. Then, we extend the
simulation to the multi-UAVs payload transportation problem
using the dynamics from Section II-B. In all cases we found
that a simple Euler Integration method and a small timestep
provide good results. All physical parameters used in the
simulation for the quadrotor are based on an existing system
identification [13]. Finally, we implement the baseline and
our approach. For our controller, we write the QP program
using an open source Python-embedded modeling language
for convex optimization problems, CVXPY [14].

In the second stage, we port our baseline controller from
Python to C and add it to the quadrotor’s firmware. Then,
we generate Python bindings for the relevant firmware code
using SWIG. We verify the semantic equivalence between
the two implementations by using those Python bindings in
our simulator in a Software-in-The-Loop (SITL) fashion.

In the third stage, we port our own controller, which
requires to solve the QP (Eq. (9)) on-board the STM32
microcontroller. In particular, our objective is to migrate our
QP formulation from a Python-embedded CVXPY language
to the C language for the STM32 controller. First, we write
the same optimization program using the OSQP (Operator
Splitting Quadratic Program) solver [15]. The difference
between CVXPY and the Python interface of OSQP is
the type of the matrices used to construct the problem. In
CVXPY, the matrices of the constraints are written using
numpy arrays, while in OSQP, the constraints matrices are
written in sparse CSC format. CVXPY is a framework
that solves different types of optimization problems using
different solvers, while OSQP is a solver which solves
convex quadratic programs. In fact, CVXPY can use OSQP
as a solver for a QP optimization program. Moreover, OSQP
can generate tailored C code that compiles into a fast and
reliable solver for the given family of QP problems in which
the problem data, but not its dimensions, change between
problem instances. Thus we use this fact to migrate the
QP written in OSQP Python interface, and generate C code
which can be augmented to our Crazyflie firmware system.
Finally, we test the optimization program and the controller
using the firmware Python bindings. Thus, the results and the
efficiency of our controller can be tested directly. In addition,
this allows us to tune the controller as close as possible to
the required actual values.

2) Numerical Example: The following example uses the
SITL firmware controller based on the firmware Python
bindings. We define a test case using the point mass model
for the payload. We consider an example of two Crazyflie
quadrotors each of mass mi = 34 g, transporting a point

0.03

0.02

0.01

0.00

x
[m

]

Actual

0.50

0.25

0.00

0.25

y
[m

]

0 1 2 3 4 5 6 7 8
0.7

0.8

0.9

z [
m

]
Actual Positions

time [s]

0.00

0.01

0.02

0.03

x
[m

]

Actual

0.25

0.00

0.25

0.50

y
[m

]

0 1 2 3 4 5 6 7 8
0.7

0.8

0.9

z [
m

]

Actual Positions

time [s]

Fig. 2. Position state of both quadrotors when they are solving the QP
are executed in a SITL simulation while tracking the hovering reference
trajectory of the payload and avoiding inter-robot collision using the
predefined hyperplanes.

mass payload of mass m0 = 10 g. The length of the both
cables are set to li = 1m which are attached from the
payload to the CoM of the quadrotors.

The initial conditions of the payload position and velocity
are chosen as p0(0) = 03×1, v0(0) = 03×1, respectively.
Moreover, the initial conditions of the cable directional unit
vectors qi(0) are chosen to be of 35◦ (i.e., 7

36π rad) relative
to the z-axis of payload frame, such that

q1(0) =
[

7
36π 0 0

]T
q2(0) =

[
− 7

36π 0 0
]T

. (10a)

The initial conditions of the angular velocities of the cables
are set to ωi(0) = 03×1. Then, the initial conditions of the
positions and velocities for the quadrotors are

pi = p0 + liqi ṗi = ṗ0 + liq̇i. (11a)

The reference trajectory of the payload’s position is hovering
at the origin, such that p0r = ṗ0r = p̈0r = 03×1. The
desired hyperplanes are assumed to be predefined such that
the two normal directions with an offset a = 02×1 are

nT
1 =

[
0.0194 −0.1091 0.04

]T
, (12a)

nT
2 =

[
−0.0194 0.1091 0.04

]T
. (12b)

These two normal directions describe the hyperplanes to be
20◦ relative to the z-axis of payload frame. The plots in Fig. 2
show the positions of both quadrotors starting from the initial
positions computed from p0(0) and qi(0) using Eq. (11a),
evolving until reaching the final value. The final values are
decided by the QP that provides the µid

, which then is
achieved by the controller when ui is computed and tracked
by each quadrotor. Notice that with this approach, we can
control the distance between the quadrotors and avoid inter-
robot collisions, while implicitly (i.e., using µid

) providing
feasible ui for the quadrotors to track. In contrast, using the
null-space of the minimum-norm solution to generate µid
in the baseline controllers results in an inter-robot collision,
because the minimum-norm solution for µid

in the hovering
case will require for each quadrotor to cancel out half the
weight of the payload while hovering on top of the payload.

C. Physical Flights

We now verify our approach in physical flight tests with
for two Bitcraze Crazyflies. As this is a distributed system,

Fig. 3. Physical experimental setup and snapshots of the execution of the
hovering reference trajectory for the payload. The red lines and the arrows
show the trajectory of both quadrotors and the payload.

each quadrotor has its own controller running on-board and
generating its own control input. We use Crazyswarm2,
which is based on Crazyswarm [16] but uses ROS2 [17] to
control and send commands for multiple Crazyflies. In order
to measure the current state, we equip each quadrotor and the
payload with a single reflective marker for position tracking
at 100Hz using an OptiTrack motion capture system. The
angular states of each quadrotor are estimated on-board using
an Extended Kalman Filter. The experimental setup for our
physical experiment is similar to the simulation environment.
In particular, the quadrotors and the payload has the same
mass as in simulation. However, the lengths of the cables
are slightly different l1 = 0.77m and l2 = 0.705m and
the gains of the controller are slightly tuned to enhance the
tracking of the cables trajectories and of the payload states.
We use nylon strings for transporting the point mass payload,
that are very thin and lightweight so we can align with the
massless cables assumption.

1) Physical Experiment Setup: We use the same initial
conditions as in Section IV-B.2 and similar hovering ref-
erence trajectory but with p0r = [0; 0; 0.4]. Moreover, the
numerical values for the normal of the hyperplanes ni and
the offset ai are also predefined as in Eq. (12).

2) Challenges: Executing the baseline and our controller
on physical quadrotors was challenging (both [9] and [6]
were only shown in simulation). The first challenge is setting
the payload and the cables (i.e., the quadrotors) to their
predefined initial conditions. Our controller assumes that the
cables are always taut and modeled as massless rigid rods.
Thus, the controller can not be active during the takeoff stage
because the cables are still slack and not in full taut mode. In
order to solve this challenge, we used the fact the Crazyflie

can switch controllers mid-flight. In particular, we take off
with the payload to the desired initial conditions while using
the on-board single quadrotor controller and then switch to
our controller.

The second challenge is in the second loop of the con-
troller that computes u

∥
i , which requires either measuring or

estimating the acceleration of the payload. This information
is needed to linearize the translational dynamics of the
payload, see Section II-C.2. Initially, we attempted to esti-
mate the acceleration of the payload by applying numerical
differentiation twice on the position of the payload. However,
the resulting signal is very noisy and causes the quadrotors
to crash. In order to overcome this challenge, we propose
two solutions, each with a trade-off. The first solution is to
use the reference acceleration of the payload, rather than the
estimated current acceleration. This approach results in a nu-
merically stable computation for u∥

i . However, this assumes
that the payload states track the reference trajectory well,
which might not be the case if any external disturbance exists
or when the initial conditions of the reference trajectory are
not accurate. The second proposed solution is to set the
estimated acceleration to zero. This works well for slow
motions, but is not stable when the reference trajectory is
aggressive.

The third challenge is executing the QP on-board and
generating solutions with a frequency close the to that of the
controller. We optimize the generated C code from OSQP to
produce faster solutions within each loop. In particular, the
runtime of the QP for each loop was reduced from 2000 µs
to 700 µs by switching to 32-bit floating point operations.

3) Experimental Results: An example of the actual tra-
jectory of the full system is shown in Fig. 3. The results
show the frames and the trajectory of each quadrotor and of
the payload (i.e., red line), starting from the defined initial
conditions towards the final state. The results of Fig. 3 show
that the QP in Eq. (9) generates solution for the cable forces
µid

that will respect the reference hovering trajectory while
taking into account the inter-robot collision. The final state
of the trajectory shows that the quadrotors, and the cable
does not exceed the predefined hyperplanes while having the
payload hovering at the reference position. Initially, when the
quadrotors were taking off, each with the single quadrotor
controller [12] (i.e., before switching to our controller), it was
noticeable that the payload did not hold a stable position.
When we switched to our controller, it was visible that
the stability of the payload trajectory tracking improved
significantly.

V. CONCLUSION AND FUTURE WORK

We present a new approach for multi-UAV cable-
suspended payload transportation. Our controller tracks
a predefined reference trajectory for the payload while
avoiding inter-robot and robot-obstacle collisions. Our
optimization-based approach is a generalized and unified
method for the baseline controller [6] and its prior work [9].
For efficiency, we use a QP to compute the desired cable
forces µid

that considers inter-robot collision and tangling

of the cables. Since we did not change any other parts of the
existing baseline, the prior stability analysis still holds. We
present a physical real experiment for our controller running
on-board of two quadrotors carrying a point mass payload.
We present an iterative development method that reduces
challenges regarding the sim-to-real gap.

In the future, we plan to validate our approach for dif-
ferent reference trajectories with more than two quadrotors.
In addition, we want to extend our approach to support
rigid body payloads. Moreover, our current work relies on
the assumption of having predefined hyperplanes. We will
investigate new methods to compute feasible hyperplanes
efficiently, e.g. by using support vector machines. In general,
we want to demonstrate motion planning and control for
payload transport using multiple quadrotors in challenging
scenarios.

REFERENCES

[1] C. Masone, H. H. Bülthoff, and P. Stegagno, “Cooperative transporta-
tion of a payload using quadrotors: A reconfigurable cable-driven
parallel robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp. 1623–1630.

[2] C. Gabellieri, M. Tognon, L. Pallottino, and A. Franchi, “A study
on force-based collaboration in flying swarms,” in Int. Conf. Swarm
Intell., 2018, pp. 3–15.

[3] P. O. Pereira and D. V. Dimarogonas, “Control framework for slung
load transportation with two aerial vehicles,” in Proc. IEEE Conf.
Decis. Control, 2017, pp. 4254–4259.

[4] E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Cooperative object trans-
port in multi-robot systems: A review of the state-of-the-art,” Frontiers
in Robotics and AI, vol. 5, p. 59, 2018.

[5] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, “Aerial co-
manipulation with cables: The role of internal force for equilibria,
stability, and passivity,” IEEE Trans. Robot. Autom. Lett., vol. 3, no. 3,
pp. 2577–2583, 2018.

[6] T. Lee, “Geometric control of quadrotor uavs transporting a cable-
suspended rigid body,” IEEE Transactions on Control Systems Tech-
nology, vol. 26, no. 1, pp. 255–264, 2017.

[7] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust collabo-
rative object transportation using multiple mavs,” I. J. Robotics Res.,
vol. 38, no. 9, pp. 1020–1044, 2019.

[8] D. Six, S. Briot, A. Chriette, and P. Martinet, “The kinematics,
dynamics and control of a flying parallel robot with three quadrotors,”
IEEE Trans. Robot. Autom. Lett., vol. 3, no. 1, pp. 559–566, 2017.

[9] T. Lee, K. Sreenath, and V. Kumar, “Geometric control of cooperating
multiple quadrotor uavs with a suspended payload,” in Proc. IEEE
Conf. Decis. Control, 2013, pp. 5510–5515.

[10] G. Li, X. Liu, and G. Loianno, “RotorTM: A flexible simu-
lator for aerial transportation and manipulation,” arXiv preprint
arXiv:2205.05140, 2022.

[11] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom. IEEE,
2011, pp. 2520–2525.

[12] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in Proc. IEEE Conf. Decis. Control,
2010, pp. 5420–5425.

[13] J. Förster, “System identification of the crazyflie 2.0 nano quadro-
copter,” B.S. thesis, ETH Zurich, 2015.

[14] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[15] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[16] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in Proc. IEEE Int. Conf. Robot.
Autom., 2017, pp. 3299–3304.

[17] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, 2022.

	Introduction
	Background
	Single Quadrotor Dynamics
	Full System Dynamics
	Control Design
	Single Quadrotor
	Control Design for Rigid Body Payload
	Control Design for Point Mass Payload

	Approach
	Problem Description
	Quadratic Optimization Problem

	Experiments
	Target Platform
	Simulation
	Simulator Development Process
	Numerical Example

	Physical Flights
	Physical Experiment Setup
	Challenges
	Experimental Results

	Conclusion and Future Work
	References

