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Decision Making and Information Structures

• Information structures in a stochastic system determine who knows what information and

the impact of actions.

• Information structures have a significant impact on optimal systems design and the

execution of computational/learning algorithms.

• We investigate the interaction between information and decision-making in large stochastic

teams (i.e., with many interacting decision-makers (DMs)).

• Examples.
− Traffic networks where decentralized traffic controllers aim to regulate the traffic to minimize

the expected delay, e.g., [Chiri, Gong, and Piccoli’23] and [Festa and Göttlich’18].
− Networked control where decentralized controllers, sensors, actuators, and encoders-decoders

act over a control system toward optimizing a common goal, e.g., [Tatikonda and Mitter’04].
− Swarm motion with an aversion to crowded regions, e.g., [Almulla, Ferreira, and Gomes’17].
− Distribution matching, where the agents select actions to match a target distribution, e.g.,

[Carmona, Lauriére, and Tan’23].
− Interacting particle models such as Markov chain Monte Carlo simulations, e.g., [Bou-Rabee

and Schuh’23].
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Decentralized Stochastic Teams

• A team, consists of a collection of DMs acting together to optimize a common cost
function but not necessarily sharing all the available information.

• Teams whose initial states, observations, cost function, or the evolution dynamics are
disturbed by some external noise processes are called stochastic teams.

• A team is sequential if the DMs act in a pre-defined order.

• If each DM’s information depends only on primitive random variables, the team is static. If
at least one DM’s information is affected by an action of another DM, the team is dynamic.

1 A collection of spaces {Ω,F , (Ui,U i), (Yi,Y i)}, specifying the system’s distinguishable
events, control, and observation spaces which are assumed to be standard Borel.

2 The Yi-valued observations and Ui-valued actions are given by

yi = hi(ω0, ωi, y1:i−1, u1:i−1)

ui = γ i(yi),

where 1 : i = {1, . . . , i} and γ i ∈ Γi is the set of all measurable functions from Yi to Ui.
3 Information structure Ii ⊆ {y1:i, u1:i−1} determines who knows what.
4 There is a probability measure P on (Ω,F). There is a rich theory on stochastic teams and

information structures.
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Large/Mean-Field Stochastic Static Teams

Let action and observation spaces be U ⊆ Rn, and Y ⊆ Rm for each DM.

• Problem PN: The expected cost under policy γ
N
:= {γ1, · · · , γN} is

JN(γ
N
) = Eγ

N

 1
N

N∑
i=1

c

ω0, ui,
1
N

N∑
p=1

δup

 .

• Problem P∞: The expected cost under policy γ := {γ i}i∈N is

J(γ) = lim sup
N→∞

Eγ

 1
N

N∑
i=1

c

ω0, ui,
1
N

N∑
p=1

δup

 .

Globally optimal solution: A policy γ⋆

N
such that

JN(γ⋆

N
) = inf

γ
N
∈ΓN

JN(γ
N
).
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Large Stochastic Dynamic Teams

State and observation dynamics are given by

xi
t+1 = ft

(
xi

t, ui
t,

1
N

N∑
p=1

δxp
t
,

1
N

N∑
p=1

δup
t
,wi

t

)
,

yi
t = ht

(
xi

0:t, ui
0:t−1, vi

t

)
.

• Problem PN
T : The expected cost under policy γ

N
γ

N
γ

N
:= {γ iγ iγ i}i∈N with γ iγ iγ i = {γ i

t}T
t=0 is

JN
T (γN
γ

N
γ

N
) =

T−1∑
t=0

Eγ
N

γ
Nγ
N

[
1
N

N∑
i=1

c
(
ω0, xi

t, ui
t,

1
N

N∑
p=1

δup
t
,

1
N

N∑
p=1

δxp
t

)]
.

• Problem P∞
T : The expected cost under policy γγγ := {γ iγ iγ i}i∈N is

J∞
T (γγγ) = lim sup

N→∞
JN

T (γN
γ

N
γ

N
).

▶ To efficiently compute an optimal solution, we need to first establish the existence and

structural results for an optimal solution.
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Information Structures

We study the problems under three classes of information structures:

1 Decentralized information structure:

Ii,DEC
t = {xi

0:t, ui
0:t−1}.

2 Centralized information structure:

ICEN
t = {x1:N

0:t , u1:N
0:t−1}.

3 Decentralized mean-field sharing information structure:

Ii,MF
t = {xi

0:t, ui
0:t−1, µ

N
0:t}

with µN
t := 1

N

∑N
i=1 δxi

t
.
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Fully Decentralized Information Structures

Our first set of results is for teams under a fully decentralized information structure:

Ii,DEC
t = {xi

0:t, ui
0:t−1}.

When we have observations:

Ii,DEC
t = {yi

0:t, ui
0:t−1}.

For clarity in presentation, we will first discuss the static case:

Ii,DEC = {yi}.
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Main Results under Fully Decentralized Information Structure

Theorem: Consider PN and P∞ (or PN
T and P∞

T ). Under sufficient conditions, we show that

Convex Teams
(with Decoupled Dynamics)

Exchangeable Teams

with N DMs

Mean-field limit

An optimal solution exists that is sym-

metric and deterministic.

An optimal solution exists that is sym-

metric and independently randomized.

N

↓

∞

N

↓

∞

approx. optimal

Non-Convex Teams

Exchangeable Teams

with N DMs

Mean-field limit

An optimal solution exists that is ex-

changeable and randomized.

An optimal solution exists that is sym-

metric and independently randomized.
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Connections with Mean-Field Games, Teams, and Controls

• The mean-field approach designs policies for both games with infinitely many DMs and
those with a large number of DMs [Huang-Caines-Malhamé’06’07, Lasry-Lions’06’07].

• Often, an infinite model is studied, and then its implications for large games are presented.
The other direction of going from finite to infinite (connections between Nash equilibria of
N-DM games and solutions of MFG) has also been studied, e.g., see [Bardi-Priuli’13,
Arapostathis-Biswas-Carrol’17, Fischer’17’22, Lacker’17’20, cardaliaguet-Rainer’19].

• For infinite DM controls and teams, many studies focused on the LQG setup; see, e.g.,
[Mahajan-Martins-Y.’13, Huang-Nguyen’11’12, Wang-Zhang’17, Arabneydi-Mahajan’15,
Ouyang-Asghari-Nayyar’18].

▶ The results presented for MFG focus on Nash equilibrium, which may be inconclusive
regarding global optimality. We aim to find globally optimal solutions for teams with a
finite and infinite number of DMs under a decentralized information structure.

▶ In the first part, we study decentralized optimal policies for finite and infinite
population teams–we do not approach the problem from a centralized agent’s perspective
(and thus cannot consider MP or dynamic programming).
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Convex Teams: Existence of a Symmetric Optimal Solution

Theorem (SIAM J Cont and Opt’21, Trans. Auto Cont’21)

Consider PN and P∞. Assume that

• c(ω0, ·, ·) is continuous and convex;

• U is convex and compact;

• Observations are i.i.d. conditioned on ω0 and i.i.d. under a measure transformation.

Then,

1 There exists a symmetric (identical) optimal policy for PN .

2 There exists a subsequence of (independently randomized) optimal policies for PN , converging to an
optimal policy for P∞ (and every converging sequence does so).

3 There exists a symmetric (independently randomized) optimal policy for P∞.

Proof method: Show that for every N agent, optimal policies exist and are symmetric. Take

N → ∞, via lower semi-continuity, show that any subsequential limit is optimal for the infinite

problem; compactness of policies ensures the existence of such a converging subsequence.
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Convexity and Dynamic Information Structure
• Many problems, however, are not convex, especially when the information is shaped via

actions, as in dynamic team problems [SICON’17].
• Example [Witsenhausen’68]: Consider a dynamic team problem with two DMs with

observations y1 and y2 = u1 + w1, where y1 and w1 standard normal random variables
(with density η). The cost is

c(ω, u1:2) = k2(y1 − u1)2 + (u1 − u2)2

for some k > 0. We can probabilistically reduce the problem to a static one by
incorporating the dynamic dependence into the cost via measure change:∫

c(ω, u1:2)Q(dy1)γ1(du1|y1)γ2(du2|y2)P(dy2|u1)

=

∫
c(ω, u1:2)

η(y2 − u1)

η(y2)︸ ︷︷ ︸
new cost is not convex in u1

γ1(du1|y1)γ2(du2|y2)Q(dy1) η(y2)dy2︸ ︷︷ ︸
Q(dy2)

.

• Relaxing convexity allows us to study teams with coupled dynamics:

xi
t+1 = ft

(
xi

t, ui
t,

1
N

N∑
p=1

δxp
t
,

1
N

N∑
p=1

δup
t
,wi

t

)
.
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Relaxing and Metrizing Policies

Assume the team is static.

Assumption

There exist functions f i and probability measures Qi such that

P((y1, . . . , yN) ∈ A | ω0) =

N∏
i=1

∫
Ai

f i(yi, ω0, y1, . . . , yi−1)Qi(dyi), ∀Ai ∈ B(Yi).

• We define convergence on policies as

γ i
n

n→∞−−−→ γ i iff δ{gi
n(yi)}(dui)Qi(dyi)

n→∞−−−→
weakly

δ{gi
n(yi)}(dui)Qi(dyi).

• To relax convexity, we allow independent and correlated randomization in policies.

• We identify γ i as an element in Borel probability measures on Ui × Yi with fixed

marginals on Yi (under the weak convergence topology):

Γi =

{
γ i ∈ P(Ui × Yi) | γ i(A) =

∫
A
πi(dui|yi)Qi(dyi)

}
.

15 / 61



Relaxing and Metrizing Policies

Assume the team is static.

Assumption

There exist functions f i and probability measures Qi such that

P((y1, . . . , yN) ∈ A | ω0) =

N∏
i=1

∫
Ai

f i(yi, ω0, y1, . . . , yi−1)Qi(dyi), ∀Ai ∈ B(Yi).

• We define convergence on policies as

γ i
n

n→∞−−−→ γ i iff δ{gi
n(yi)}(dui)Qi(dyi)

n→∞−−−→
weakly

δ{gi
n(yi)}(dui)Qi(dyi).

• To relax convexity, we allow independent and correlated randomization in policies.

• We identify γ i as an element in Borel probability measures on Ui × Yi with fixed

marginals on Yi (under the weak convergence topology):

Γi =

{
γ i ∈ P(Ui × Yi) | γ i(A) =

∫
A
πi(dui|yi)Qi(dyi)

}
.

15 / 61



Sets of Randomized Policies and Classes of Correlations

• We introduce the following sets of randomized policies:

− LN : set of all joint distributions of γ1:N ;
− LN

EX: set of all joint distributions of γi such that

N-exchangeability← L(γ1, . . . , γN) = L(γσ(1), . . . , γσ(N)) ∀ permutations σ;

− LN
CO: set of all joint distributions of γis that are independent, conditioned on common

randomness of z;
− Li

CO,SYM: set of all γis that are identical and independent, conditioned on common randomness
of z;

− Li
PR: set of all γis that are independent.

− LN
PR,SYM: set of all joint distributions of γis that are identical (symmetric) and independent.

• We denote those for P∞ by dropping super-index N, e.g., LCO.

• A detailed study of correlations under decentralized information is [Saldi-Y.-(Prob.

Surveys’22)].
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Relaxing Convexity: Exchangeability and Symmetry for Optimal Policies

Theorem (Math of OR’23)
Consider PN and P∞. Assume that

• U is compact;

• c(ω0, ·, ·) is continuous;

• Observations of DMs are i.i.d. conditioned on ω0 and i.i.d. under change of measure.

Then:

1 There exists an optimal policy for PN , that is exchangeable (i.e., it belongs to LN
EX).

2 There exists an optimal policy for P∞, that is symmetric and privately randomized (i.e., it belongs to
LPR,SYM).

3 A symmetric optimal solution for P∞ is approximately optimal for PN .

Note that N-exchangeability ≠⇒ symmetry.

Example: P(X1 = 1,X2 = 0) = P(X1 = 0,X2 = 1) = 0.5,P(X1 = 0,X2 = 0) = P(X1 =

1,X2 = 1) = 0. However, if they are conditionally i.i.d., we must have

P(X1 = 0,X2 = 0) = 0 =

∫ 1

0
p2

zη(dz),P(X1 = 1,X2 = 1) = 0 =

∫ 1

0
(1 − pz)

2η(dz).
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Proof of Part (i)

1 Optimality of an exchangeable policy:

− For any permutation σ of {1, . . . ,N}, show that the expected cost is invariant under any
permutation of policies, i.e.,

JN(PN,σ
π ) = JN(PN

π).

− For any arbitrary policy PN
π , construct an exchangeable policy P̂N

π by averaging policy over all
possible permutations σ ∈ SN .

− By linearity of the expected cost in randomized policies yields that

JN(P̂N
π) =

1
|SN |

∑
σ∈SN

JN(PN,σ
π ) = JN(PN

π).

2 Existence of an optimal solution within exchangeable ones:

inf
PN
π∈ LN

EX︸︷︷︸
Compact

JN(PN
π)︸ ︷︷ ︸

Continuous

= min
PN
π∈ LN

EX︸︷︷︸ JN(PN
π)︸ ︷︷ ︸
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Proof (Cont.) – Key Lemma

Lemma

Consider PN . Suppose that

• The cost function c : Ω0 ×U×U → R+ is bounded and continuous in its second and third
arguments;

• U is compact;

• Observations are i.i.d. under measure transformation.

Then:

lim sup
N→∞

inf
PN
π∈LN

EX

JN(PN
π) = lim sup

N→∞
inf

Pπ∈LEX
JN(Pπ,N).
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Sketch of a Proof of Lemma

1 N-exchangeable optimal actions and policies converge in distribution to infinitely
exchangeable actions and policies:

− By [Diaconis and Friedman’80], we construct infinitely exchangeable policies and actions close
in total variation to N-exchangeable optimal actions and policies for any finite marginals:∥∥∥L(γ1⋆

N , . . . , γm⋆
N )− L(γ1

N,∞, . . . , γm
N,∞)

∥∥∥
TV
−−−−→
N→∞

0.

− Using the fact that LEX is compact, show that a subsequence of optimal policy and actions
converge in distribution to infinitely exchangeable policy and actions: for every m ≥ 1

L(γ1⋆
n , . . . , γm⋆

n ) −−−−→
n→∞

L(γ1
∞, . . . , γm

∞)

L(u1⋆
n , . . . , um⋆

n ) −−−−→
n→∞

L(u1
∞, . . . , um

∞).

− By [Aldous ’85], the empirical measures of exchangeable optimal actions converge weakly since
they converge in distribution.

2 Show that the limsup of expected cost converges as policies converge.

− This follows from a generalized dominated convergence theorem, since marginals and empirical
measures of actions converge weakly.
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Proof (Cont.)

Theorem (de Finetti Representation Theorem for Policies)
Any infinitely exchangeable policy is conditionally independent and identical, i.e., for any Pπ ∈ LEX

Pπ(γ ∈ A) =
∞∏
i=1

∫ 1

0
P̂π(γ

i ∈ Ai|z)η(dz) ∈ LCO,SYM.

This yields that (second inequality to be justified in the next slide)

inf
Pπ∈L

lim sup
N→∞

JN(Pπ,N) ≥ lim sup
N→∞

inf
PN
π∈LN

EX

JN(PN
π)

= lim sup
N→∞

inf
Pπ∈LEX

JN(Pπ,N)

= lim sup
N→∞

inf
Pπ∈LCO,SYM

JN(PN
π)

= lim sup
N→∞

inf
PN
π∈LN

PR,SYM

JN(Pπ,N)

≥ inf
Pπ∈LPR,SYM

lim sup
N→∞

JN(Pπ,N)

≥ inf
Pπ∈L

lim sup
N→∞

JN(Pπ,N).
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Proof (Cont.)

We have

lim sup
N→∞

inf
PN
π∈LN

PR,SYM

∫
PN
π(dγ)µ

N(dω0, dy)cN(γ, y, ω0)

≥ lim
n→∞

∫ (∫
c
(
ω0, u,

∫
U

uΛn(du × Y)
)
Λn(du, dy)

) ∞∏
i=1

γ⋆
n (dui, dyi)P0(dω0)

≥
∫ (∫

c
(
ω0, u,

∫
U

uΛ(du × Y)
)
Λ(du, dy)

) ∞∏
i=1

γ⋆(dui, dyi)P0(dω0) (∗)

≥ inf
Pπ∈LPR,SYM

lim sup
N→∞

∫
Pπ,N(dγ)µN(dω0, dy)cN(γ, y, ω0)

where Λn(·) = 1
N

∑n
i=1 δ(ui⋆

n ,yi)(·).
Equality (∗) follows from generalized DCT since γ⋆

n and Λn converge to γ⋆ and Λ weakly,

respectively as n → ∞.
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Summary: Main Results under Decentralized Information Structure

Theorem: Consider PN and P∞ (or PN
T and P∞

T ). Under sufficient conditions, we show that

Convex Teams
(with Decoupled Dynamics)

Exchangeable Teams

with N DMs

Mean-field limit

An optimal solution exists that is sym-

metric and deterministic.

An optimal solution exists that is sym-

metric and independently randomized.

N

↓

∞

N

↓

∞

approx. optimal

Non-Convex Teams

Exchangeable Teams

with N DMs

Mean-field limit

An optimal solution exists that is ex-

changeable and randomized.

An optimal solution exists that is sym-

metric and independently randomized.
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Outline

1 Introduction

2 Decentralized Stochastic Teams and Their Mean-Field Limit

3 Centralized and Mean-Field Sharing Stochastic Teams and Their Mean-Field Limit

4 Games Among Large Stochastic Teams and Their Mean-Field Limit

5 Continuous-time Stochastic Teams with Decentralized Information Structure

6 Conclusion
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Recall: Information Structures

We now focus on teams with centralized and decentralized mean-field sharing information

structures:

1 Centralized information structure:

ICEN
t = {x1:N

0:t , u1:N
0:t−1}.

2 Decentralized mean-field sharing information structure:

Ii,MF
t = {xi

0:t, ui
0:t−1, µ

N
0:t}

with µN
t := 1

N

∑N
i=1 δxi

t
.
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Centralized Finite and Infinite Horizon Discounted Problems

State dynamics is given by

xi
t+1 = ft

(
xi

t, ui
t, µ

N
t ,wi

t
)
,

• For β ∈ (0, 1), the expected cost under policy γ
N

γ
N

γ
N
:= {γ iγ iγ i}i∈N with γ iγ iγ i = {γ i

t}T
t=0 is

PN
T : JN

T (γN
γ

N
γ

N
) = Eγ

N
γ

Nγ
N

[
1
N

N∑
i=1

T−1∑
t=0

βtc
(
xi

t, ui
t, µ

N
t
)]

,

PN : JN(γ
N

γ
N

γ
N
) = Eγ

N
γ

Nγ
N

[
1
N

N∑
i=1

∞∑
t=0

βtc
(
xi

t, ui
t, µ

N
t
)]

.

• The expected cost under policy γγγ := {γ iγ iγ i}i∈N is

P∞
T : J∞

T (γγγ) = lim sup
N→∞

JN
T (γN
γ

N
γ

N
),

P∞ : J∞(γγγ) = lim sup
N→∞

JN(γ
N

γ
N

γ
N
).
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Main Results for Problems under Centralized and Mean-Field Sharing

Information Structures

Theorem: Consider PN
T and P∞

T . Under sufficient conditions, we show that

N-DMs Teams withMean-field sharing
MDP centralized information

Mean-field limit McKean-Vlasov
MDPOpt. of symmetric

policy

Measure-valued

MDP

A symmetric independent mean-

field sol. with decentralized mean-

field sharing information is near-

optimal.

A finite MDP approximation for the

representative DM MDP problem.

An optimal sol. exists that is sym-

metric and independently random-

ized with the decentralized infor-

mation structure.

N

∞

An optimal sol. exists that is ex-

changeable with the centralized

information structure.

approx. optimal
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Connections with McKean-Vlasov and Mean-Field Control Problems

• In [Bäuerle’23], an equivalent MDP formulation is characterized for finite population
problems with centralized information. [Bäuerle’23] also showed that the limsup of value
functions for the finite population MDP is equal to the value function of a limiting MDP.

• [Bäuerle’23] did not establish that the optimal value function can be attained by
independently randomized symmetric policies, except when dynamics are decoupled.

• In [Carmona, Lauriére, and Tan’23], dynamic programming equations have been
established for McKean-Vlasov control problems with a representative agent using a lifted
measure-valued MDP.

• In [Motte and Pham’22], mean-field MDP, the connection between the finite population
problem, and the limiting MDP for the McKean-Vlasov MDP has been established,
assuming the policies are open-loop, symmetric, and decentralized.

• In [Arabneydi and Mahajan’14], mean-field sharing information structure studied for finite
population mean-field teams under symmetric policies, where dynamic programming
equations have been obtained using the common information approach.

▶ We demonstrate that the solution of the measure-valued MDP can be realized as an
exchangeable policy for finite population and a symmetric and decentralized policy with
mean-field sharing information for the infinite population problems.
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Randomized Policies

• Centralized (correlated) policies: πt(u1:N
t ∈ · | x1:N

0:t , u1:N
0:t−1);

• Centralized joint Markov policies: πt(u1:N
t ∈ · | x1:N

t , µN
t );

• Centralized exchangeable policies:

πt(u
σ(1):σ(N)
t ∈ · | xσ(1):σ(N)

0:t , uσ(1):σ(N)
0:t−1 ) = πt(u1:N

t ∈ · | x1:N
0:t , u1:N

0:t−1);

• Conditionally symmetric and independent with decentralized mean-field sharing

information

πt(u1:N
t ∈ ·|x1:N

0:t , u1:N
0:t−1) =

∫ 1

0

N∏
i=1

πt(ui
t ∈ ·|xi

0:t, µ
N
0:t, z)νt(dz);

• Symmetric and independent with decentralized mean-field sharing information

πt(u1:N
t ∈ ·|x1:N

0:t , u1:N
0:t−1) =

N∏
i=1

πt(ui
t ∈ ·|xi

0:t, µ
N
0:t).
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Measure-Valued Mean-Field MDP

Theorem (Bäuerle’23)
For centralized PN , an optimal policy can be expressed as a map from µN

t to θN
t for every t ≥ 0.

Reformulate the centralized N-agent problem as a measure-valued MDP:
1 State and action (µN

t and θN
t ):

− Let PN
E (X× U) be the set of all empirical measures on (x1:N , u1:N).

− For any µN ∈ PN
E (X), a new measure-valued action set is

U(µN) :=
{
θN ∈ PN

E (X× U) | θN(· × U) = µN(·)
}
.

2 Dynamics and costs (η and c̃):

− Show that

P(µN
t+1 ∈ ·|µ

N
0:t, θ

N
0:t) = P(µN

t+1 ∈ ·|µ
N
t , θ

N
t ) := η(·|µN

t , θ
N
t )

1
N

N∑
i=1

c(xi, ui, µN) =

∫
c(x, u, µN)θN(dx, du) := c̃(µN , θN).

3 Markov policies (gt):

− Deterministic (Markov) policies are measurable functions gt : µN
t 7→ θN

t .

30 / 61



Exchangeability of an Optimal Policy for N-DM Problems

Theorem (CDC’24)
Suppose that

(i) U and X are compact;

(ii) c : X× U× P(X)→ R and f (·, ·, ·,w) : X× U× P(X)→ X are jointly continuous.

Then:

1 There exists an optimal policy for PN , that is exchangeable.

2 The value iterations

JN
T−1,T(µ

N) = inf
θN∈U(µN)

c̃(µN , θN)

JN
t,T(µ

N) = inf
θN∈U(µN)

{
c̃(µN , θN) + β

∫
JN

t+1,T(µ
N)η(dµN |µN , θN)

}
admit a Markov solution for PN

T that can be realized by an exchangeable Markov policy.

3 The value iterations

JN
∞(µN) = inf

θN∈U(µN)

{
c̃(µN , θN) + β

∫
JN
∞(µN)η(dµN |µN , θN)

}
admit a Markov stationary solution for PN that can be realized by an exchangeable stationary policy.
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Sketch of a Proof

1 Exchangeability of a realized policy at t = T − 1:

− Suppose that g⋆T−1 is optimal, inducing θN⋆
T−1 and realized by P⋆

T−1 induced by a Markovian
randomized policy π⋆

T−1. Denote the permutation of P⋆
T−1 by Pσ⋆

T−1. This permutation does not
change µN and θN⋆

T−1.
− Construct an exchangeable distribution P̂⋆

T−1 on x1:N
T−1, u1:N

T−1 by averaging over all permutation
of P⋆

T−1.
− Show that ∫

c̃(µ, θN)P̂⋆
T−1(dx1:N

T−1, du1:N
T−1) =

∫
c̃(µ, θN)P⋆

T−1(dx1:N
T−1, du1:N

T−1)

2 Exchangeability of a realized policy for t = 0, . . . , T − 1:

− Recursively, show that∫ ∫
JN

t,T(µ
′)η

(
dµ′|µN , θN) P̂⋆

t−1(dx1:N
T−2, du1:N

T−2) =

∫
JN

t,T(µ
′)η(dµ′|µN , g⋆t−1(µ)).

3 Existence of an optimal Markov policy g⋆g⋆g⋆:

− Use a measurable selection theorem.
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Example: Symmetric Policies Might Not be Optimal for N-DM Problems

It is known that the map from µN to θN might not be attainable by symmetric policies (e.g.,

[Arabneydi and Mahajan’14]). A simple example is as follows:

Consider the dynamics

xi
t+1 = ui

t.

Let X = U = {0, 1} and N = 2. Take x1
0 = x2

0 = 1.

Let the cost be

t=1∑
t=0

∑
x∈X

∣∣∣∣µ2
t (x)−

1
2

∣∣∣∣2

, µ2
t (x) :=

1
2

(
δx1

t
(x) + δx2

t
(x)

)
Under a symmetric policy, ui

t = γ i
t(x

i
t, µ

2
t ) = γt(xi

t, µ
2
t ), with µ2

0 = [0 1], µ2
1 will always stay

away from the uniform measure [ 1
2

1
2 ] with arbitrarily high probability;

• For deterministic policies: µ2
1 will be a full mass on either 0 or 1;

• For randomized policies, µ2
1 will be a positive measure on (0, 0), (0, 1), (1, 0), (1, 1).

The optimal symmetric policy selects the actions with probabilities 0.5, attaining

0.5 + 0.25 = 0.75.

However, if we choose γ1
0(1, µ

2
0) = 1 and γ2

0(1, µ
2
0) = 0, the total cost will be 0.5.

33 / 61



Symmetric Policies are Optimal in the Limit and Near-Optimal for Large N

Theorem (CDC’24)
Suppose that

(i) U and X are compact;

(ii) c : X× U× P(X)→ R is jointly continuous;

(iii) f (·, ·, ·,w) : X× U× P(X)→ X is jointly continuous for every w.

Then:

1 The sequence of exchangeable optimal policies for PN
T obtained via value iterations converges

through a subsequence to a symmetric and independent policy that is optimal for P∞
T .

2 An optimal policy exists for P∞
T and P∞ that is decentralized, symmetric, and independent with

Markovian policies for PN
T and stationary policies for P∞.

3 A symmetric (conditionally) independent optimal solution for P∞
T (P∞) under the decentralized

mean-field-sharing information structure is near optimal for PN
T (PN ) within any policy with the

centralized information structure for large N.
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Implications of Optimality of Symmetric Policies for Infinite Population Teams

Theorem (CDC’24)
Under the same assumptions,

1 Any solution of the single-agent representative DM (Mckean-Vlasov) problem with

xR
t+1 = f (xR

t , uR
t , µ

R
t ,wR

t ), µR
t = L(xR

t )

JR
T (π

R) = EπR

[T−1∑
t=0

βtc(xR
t , uR

t , µ
R
t )

]
,

is optimal for P∞
T .

2 An optimal solution of the representative agent Mckean-Vlasov problem can be expressed as a map
from µt to θt = L(xR

t , uR
t ) for every t ≥ 0.

Proof method. Reformulate by MDP with µR
t+1 ∼ ηR(·|µR

t , θ
R
t ) and the running cost

c̃(θR
t , µ

R
t ) =

∫
c(xR

t , uR
t , µ

R
t )θ

R
t (dxR

t , duR
t ).

Endow the policy with Young topology (which makes it compact) and view it as the action

space
Γ(µ) =

{
θπ ∈ P(X× U) | θπ(A) =

∫
A
π(du|x)µ(dx)

}
.
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Implications of Near Optimality of Symmetric Policies for Large Teams

Lemma (CDC’24)
Under symmetric randomized policies,

Pπππ
(
(xi

t+1, µ
N
t+1) ∈ ·|x1:N

0:t , u1:N
0:t

)
= Pπππ (

(xi
t+1, µ

N
t+1) ∈ ·|xi

t, µ
N
t
)
.

Proposition (CDC’24)
Suppose that

(i) U and X are compact;

(ii) c : X× U× P(X) → R is jointly continuous;

(iii) f (·, ·, ·,w) : X× U× P(X) → X is jointly continuous for every w.

1 A symmetric independent optimal solution under mean-field sharing is nearly optimal for

large teams under the centralized information structure.

2 Under symmetry, each agent with a mean-field sharing information structure faces an

MDP.
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Verification Theorem for the Representative Agent

Theorem (CDC’24)
Consider the MDP for the representative DM under the same assumption.

(i) For the finite horizon, an optimal Markov policy g⋆Tg⋆Tg⋆T exists and satisfies the value iterations:

Jt,T(µ) = T(Jt+1,T)(µ), JT−1,T(µ) := inf
θ∈U(µ)

c̃(µ, θ) = c̃(µ, g⋆T−1(µ))

T(ν)(z) := inf
θ∈U(z)

{
c̃(z, θ) + β

∫
ν(z)η(dz|z, θ)

}
.

Furthermore, an optimal policy g⋆Tg⋆Tg⋆T can be realized by a sequence of Markov policies {π⋆
t }t≥0 with

π⋆
t ∈ P (U | X).

(ii) For the infinite horizon, an optimal stationary Markov policy g⋆g⋆g⋆ exists and satisfies the value iteration:

J∞(µ) := T(J∞)(µ), J∞(µ) :=

{
c̃(µ, g⋆(µ)) + β

∫
ν(µ)η(dµ|µ, g⋆(µ))

}
.

Furthermore, an optimal policy g⋆g⋆g⋆ can be realized by sequence of stationary Markov policies
(π⋆, π⋆, . . .) with π⋆ ∈ P (U | X) for the representative DM.

Proof method. We show that transition kernel η is weakly continuous, and c̃ is continuous, and

we use the compactness of new action space under the Young topology.
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Finite Approximation for the Representative DM Problem

Under our assumptions, the representative DM’s MDP has a weak Feller kernel with the state

space P(X) and the action space

Γ(µ) =

{
θπ ∈ P(X× U) | θπ(A) =

∫
A
π(du|x)µ(dx)

}
,

which is compact under the Young topology.

Denote the quantization of X under the nearest neighborhood quantizer by X̂n. Similarly, we

quantize the action space Ûn.

Define

Γ̂n(µ̂) =

{
θ̂π ∈ P(X̂n × Ûn) | θ̂π(A) =

∫
A
π̂(du|x)µ̂(dx)

}
.

Define the transition kernel η̂n ∈ P(P(X̂n)|P(X̂n)× Γ̂n) as a quantized version of η.

Also, the cost ĉ(θ̂π, µ̂) =
∫

c(x, u, µ̂)θ̂π(dx, du). Hence,(
P(X̂n),P(X̂n × Ûn), {Γ̂n(µ̂)|µ̂ ∈ P(X̂n)}, η̂n, ĉ

)
constitutes a finite MDP denoted by MDPn. Builds on [Saldi, Linder, and Y.’18].
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Finite Approximation for the Representative DM Problem (Cont.)

Let

(Tn(ν̂))(µ̂) := inf
θ∈Γ̂n(µ̂)

{
ĉ(µ̂, θ) + β

∫
ν̂(µ)η̂n(dµ | µ̂, θ)

}
.

We write the value iterations for MDPn:

Ĵn
T−1,T(µ̂) = inf

θ∈Γ̂n(µ̂)
ĉ(µ̂, θ)

Ĵn
t,T(µ̂) = Tn(Ĵn

t,T)(µ̂).

For the infinite horizon cost, we have

Ĵn
∞(µ̂) = Tn(Ĵn

∞)(µ̂).
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Finite Approximation for the Representative DM Problem (Cont.)

Let J0,T and J∞ be the optimal performance for the finite horizon and infinite horizon under

MDP, respectively.

Let Ĵn
0,T and Ĵn

∞ be the optimal performances for the finite horizon and infinite horizon under

MDPn, respectively.

Theorem (CDC’24)
Consider the MDP for the representative DM. Suppose further that

(i) µ0 is non-atomic,

(ii) T (·|xR
0 , uR

0 , µ0) is non-atomic for every xR
0 , uR

0 and µ0.

Then,

lim
n→∞

∣∣∣Ĵn
0,T(µ0)− J0,T(µ0)

∣∣∣ = 0,

lim
n→∞

∣∣∣Ĵn
∞(µ0)− J∞(µ0)

∣∣∣ = 0.
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Sketch of a Proof
1 Convergence at t = T − 1:

− Under the assumptions, {µt}t≥0 is non-atomic under any policy. Show that Γ̂n(µ̂) is dense in
Γ(µ).

− For every µ̂ ∈ P(X̂), show that∣∣∣Ĵn
T−1,T(µ̂)− JT−1,T(µ̂)

∣∣∣ = ∣∣∣∣∫ c(x, u, µ̂)π⋆
n (du|x)µ̂(dx)−

∫
c(x, u, µ̂)π⋆(du|x)µ̂(dx)

∣∣∣∣→ 0.

− Suppose that µ̂n converges weakly to µ as n→∞. Show that the following converges to 0:∣∣∣Ĵn
T−1,T(µ̂n)− JT−1,T(µ)

∣∣∣ = ∣∣∣∣∫ c(x, u, µ̂n)π̃
⋆
n (du|x)µ̂n(dx)−

∫
c(x, u, µ)π̃⋆(du|x)µ(dx)

∣∣∣∣ .
This implies that Ĵn

T−1,T converges continuously to JT−1,T .
2 Convergence at t = T − 2:

− Show that∣∣∣∣∫ c(x, u, µ̂)π⋆
n (du|x, µ̂)µ̂(dx)−

∫
c(x, u, µ̂)π⋆(du|x, µ̂)µ̂(dx)

∣∣∣∣
+ β

∣∣∣∣∫ Ĵn
T−1,T(µ̂T−1)η̂n(dµ̂T−1|µ̂T−2, θ̂

⋆
n )−

∫
JT−1,T(µT−1)η(dµT−1|µ̂T−2, θ

⋆)

∣∣∣∣→ 0.

− Show Ĵn
T−2,T converges continuously to JT−2,T and recursively Ĵn

0,T converges to J0,T .
3 Recursively, establish convergence at t = 0.
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Review: Main Results for Problems under Centralized and Mean-Field Sharing

Information Structures

Theorem: Consider PN
T and P∞

T . Under sufficient conditions, we show that

N-DMs Teams withMean-field sharing
MDP centralized information

Mean-field limit McKean-Vlasov
MDP

Dynamic program
(Finite approx. MDP)Opt. of a symmetric

policy

Single-agent dynamic program

Measure-valued

MDP

A symmetric independent mean-

field sol. with decentralized mean-

field sharing information is near-

optimal.

A finite MDP approximation for the

representative DM MDP problem.

An optimal sol. exists that is sym-

metric and independently random-

ized with the decentralized infor-

mation structure.

N

∞

An optimal sol. exists that is ex-

changeable with the centralized

information structure.

approx. optimal
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Games Among Teams

Several real-life competitive game scenarios occur on a team basis with multiple (large number

of) DMs having access to local information.

Examples.

1 Multiple distributed renewable energy stations in the energy market:

Multiple distributed renewable energy stations (each can be viewed as a large team

distributed in various locations) compete for optimal energy production and pricing

policies (where the abundance of energy resources might lead to price reduction, creating

an incentive to interact strategically).

2 Large sensor networks vs large decentralized jammers:

In sensor networks, a large collection of decentralized sensors (act as a large team) shares

their information (by their actions) to a fusion center in the presence of jamming in the

system, entailing a large team of decentralized jammers.
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Games Among Teams with Fully Decentralized Information Structure

Consider a game between two teams.
Let action and observation spaces be Ui ⊆ Rn, and Yi ⊆ Rm for each DM of team i.

• Problem PN: The expected cost under policy γ1:2
N

:= {γ1
N
, γ2

N
} with γ i

N
:= {γ i

k}
Ni
k=1 is

Ji
N(γ

1:2
N
) = Eγ1:2

N

 1
Ni

Ni∑
k=1

ci

ω0, ui
k,

1
N1

N1∑
p=1

u1
p,

1
N2

N2∑
p=1

u2
p

 .

• Problem P∞: The expected cost under policy γ1:2
∞

:= {γ1
∞
, γ2

∞
} with γ i

∞
:= {γ i

k}∞k=1 is

Ji
∞(γ1:2

∞
) = lim sup

N1,N2→∞
Eγ1:2

∞

 1
Ni

Ni∑
k=1

ci

ω0, ui
k,

1
N1

N1∑
p=1

u1
p,

1
N2

N2∑
p=1

u2
p

 .

Information is decentralized:
Ii
k = {yi

k}.

We can also define the dynamic formulation with the decentralized information structure.
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(Team-Wise) Nash Equilibrium

Definition

A policy γ1⋆:2⋆
L

is an ϵ-Nash equilibrium if

Ji
L(γ

1⋆:2⋆
L

) ≤ inf
γi

L
∈Γi

L

Ji
L(γ

−i⋆
L

, γ i
L
) + ϵ i = 1, 2,

where −i := {1, 2}\{i} and L = N or ∞. If ϵ = 0, then γ1⋆:2⋆
L

constitutes a Nash equilibrium.

Our notion of (team-wise) Nash equilibrium is a suitable equilibrium notion for such games

since (global) optimality is desirable among DMs within teams.
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Existence of Exchangeable Nash equilibrium for PN

Theorem (SIAM J Cont and Opt’24)
Consider PN . Let

(i) Ui is compact.

(ii) ci(ω0, ·, . . . , ·) is continuous and (uniformly) bounded for all ω0.

(iii) (yi
k)

Ni
k=1 are Ni-exchangeable, conditioned on ω0.

(iv) (y1
k)

N1
k=1 and (y2

k)
N2
k=1 are mutually independent, conditioned on ω0.

Then, there exists a Nash equilibrium for PN that is N-exchangeable, i.e., it belongs to L1
EX,N × L2

EX,N .

Proof method. First, under (i), show that Li
EX,N is convex and compact. Then, use (ii) and the

Kakutani-Fan-Glicksberg fixed point theorem to show the existence of a Nash equilibrium

among all exchangeable policies. Finally, use (iii) and (iv) to show that we can restrict the

search over exchangeable policies in finding the best response policies to fixed exchangeable

ones of the other team.

▶ For more general non-exchangeable games, we showed the existence of a Nash

equilibrium with common randomness among each team.
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Existence of Exchangeable Nash equilibrium for PN

The zero-sum case: Conditional independence can be relaxed [Hogeboom-Burr-Y. (SCL’23)],

as the proof builds on a minimax theorem (and not a fixed point argument).
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Existence of Symmetric Nash equilibrium for P∞ and Approximate Nash

equilibrium for PN

Theorem (SIAM J Cont and Opt’24)
Consider P∞. Let

(i) Ui is compact and ci(ω0, ·, ·, ·) is continuous for all ω0.

(ii) (y1
k)

N1
k=1 and (y2

k)
N2
k=1 are independent, conditioned on ω0;

(iii) (yi
k)

Ni
k=1 have an identical distribution, conditioned on ω0.

Then:

1 There exists a Nash equilibrium that is independently randomized and symmetric, i.e., it belongs to
L1

PR,SYM × L2
PR,SYM.

2 An independently randomized symmetric Nash equilibrium for P∞ constitutes an approximate Nash
equilibrium for PN among all randomized policies.

Proof method. First, use the Kakutani-Fan-Glicksberg fixed point theorem for a generic DM

representing the team population and then the de Finetti Theorem.

▶ This indicates that games among teams are asymptotically equivalent to those among

representative agents. We are not claiming uniqueness.
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Large Continuous-Time Stochastic Teams: Dynamics

In our model, each DM has access to only a private state process that evolves as follows

dXi
t = bt(Xi

t ,Ui
t)dt + σt(Xi

t)dW i
t , t ∈ T := [0, T], (*)

where bt(·, ·) and σt(·) are continuous.

Suppose that (*) admits a unique, strong solution under non-anticipative open-loop policies and

satisfies a nondegeneracy condition.

Also, we study the coupled dynamics using Girsanov’s change of measures:

dXi
t = bt

Xi
t ,Ui

t ,
1
N

N∑
p=1

δXp
t
,

1
N

N∑
p=1

δUp
t

 dt + σt(Xi
t)dW i

t , t ∈ T,

For this talk, we focus on (*).
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Large Continuous-Time Stochastic Teams: Expected Costs

Admissible policies: A policy γ iγ iγ i maps available information to actions such that the action

process {Ui
t}t is adapted to the natural filtration generated by Xi

[0,t] and t.

DMs collectively minimize the following expected cost function:

JN(γ
1:Nγ1:N

γ1:N) := Eγγγ1:N

∫ T

0

1
N

N∑
i=1

c

Xi
t ,Ui

t ,
1
N

N∑
p=1

δXp
t
,

1
N

N∑
p=1

δUp
t

 dt

 .

The corresponding mean-field limit P∞ :

J∞(γγγ) = lim sup
N→∞

JN(γ
1:Nγ1:N

γ1:N).

Globally optimal solution: policy γ1⋆:N⋆γ1⋆:N⋆γ1⋆:N⋆ such that

JN(γ
1⋆:N⋆γ1⋆:N⋆

γ1⋆:N⋆) = inf
γ1:Nγ1:Nγ1:N

JN(γ
1:Nγ1:N

γ1:N).
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Convex Teams: Existence of a Symmetric Markovian Optimal Solution

Markovian Policies: γγγ i is Markovian if for any t ∈ [0, T], γ i
t : X → U such that Ui

t is

measurable with respect to the σ-field generated by only (t,Xi
t).

Theorem (ACC’24)
Consider PN . Then:

(i) Without any loss, we can restrict the search for an optimal solution to Markovian policies.

(ii) If U is convex and J(γ1:Nγ1:Nγ1:N) is convex in γ1:Nγ1:Nγ1:N , then without any loss, we can restrict the search for an
optimal solution to symmetric Markovian policies.

Example: Linear quadratic teams.

▶ For convex teams with a finite number of DMs, we can restrict the search for an optimal

solution to symmetric Markov policies.
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Randomized Markov Policies

Definition

For each DMi, the set of randomized Markov policies is the set of all Borel measurable
functions ν iν iν i : [0, T]× X → P(U) such that the P(U)-valued process Ui

t = ν i
t (X

i
t) becomes

adapted to σ(Xi
t , t).

We endow the set of randomized Markov policies with Borkar’s topology in [Borkar’89] under
which ν i

nν
i
nν
i
n converges to ν iν iν i as n → ∞ if

lim
n→∞

∫ T

0

∫
X

f (t, x)
∫
U

g(t, x, u)ν i
n,t(x)(du) dxdt =

∫ T

0

∫
X

f (t, x)
∫
U

g(t, x, u)ν i
t (x)(du) dxdt

for all f ∈ L1([0, T]× X) ∩ L2([0, T]× X) and g ∈ Cb([0, T]× X× U). Denote this set of
probability measures by Mi. Let µiµiµi(·;ν iν iν i) := L(XiXiXi)(·), be a probability measure on path space
C([0, T];X) induced by ν iν iν i.

Lemma (Borkar’89)
Suppose that U is compact. Then:

• Mi is compact.

• If ν i
nν
i
nν
i
n converges to ν iν iν i, then µiµiµi(·;ν i

nν
i
nν
i
n) converges weakly to µiµiµi(·;ν iν iν i) as n → ∞.
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nν
i
nν
i
n) converges weakly to µiµiµi(·;ν iν iν i) as n → ∞.
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Existence of Globally Optimal Solutions for PN

Theorem (ACC’24)
Consider PN . Let

• c be continuous in all its arguments.

• U be compact.

Then:

1 There exists a randomized globally optimal policy (ν1ν1ν1, . . . , νNνNνN) that is Markovian, i.e., ν iν iν i ∈Mi for
all i ∈ N .

2 If, additionally, the team is convex, then there exists a randomized globally optimal policy that is
Markovian and symmetric.

Proof method. We first show that ν1:Nν1:Nν1:N 7→ JN(ν
1:Nν1:Nν1:N) is continuous. Then, since Mi is compact,

there exists an optimal solution ν1⋆:N⋆ν1⋆:N⋆ν1⋆:N⋆ for PN among randomized Markov policies. Since

restricting the search for global optimality to randomized Markov policies is without loss, this

completes the proof of part (i). Part (ii) follows a similar line of reasoning by restricting

symmetric Markovian policies apriori.
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Existence of Globally Optimal Solutions for P∞

Theorem (ACC’24)
Consider PN and P∞ . Let

• c be continuous in all its arguments.

• U be compact.

• PN be convex for every N.

Then:

1 Any sequence of randomized Markov globally optimal policies {ν⋆Nν
⋆
Nν
⋆
N}N for PN that is symmetric admits

a subsequence that converges to a globally optimal policy for P∞ that is symmetric and Markovian.

2 There exists a randomized globally optimal policy for P∞ that is Markovian and symmetric.

Proof method. For a converging subsequence {ν⋆
nν
⋆
nν
⋆
n }n ⊆ Mi, we show that empirical measures

converge weakly almost surely using the Skorohod’s representation theorem. Use generalized

DCT to show
lim sup

N→∞
JN(ν

⋆
Nν
⋆
Nν
⋆
N , . . . , ν

⋆
Nν
⋆
Nν
⋆
N) = J∞(ν⋆ν⋆

ν⋆).
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Relaxing convexity: Sets of randomized policies-Part I

Let Γi be the set of all progressively measurable random probability measure processes γ iγ iγ i(ω)

on [0, T]× U that satisfies the three following conditions:

(i) Marginals on [0, T] are fixed to be a Lebesgue measure.

(ii) Random variable γ i
t : ω 7→ γ iγ iγ i(·|t)(ω) is independent of W i

s − W i
t for s > t and for any

t ∈ T, and W j
[0,T] any j ∈ N .

We equip Γi with the Young topology, that is, P([0, T]× Ui) is endowed with the weak

convergence topology.
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Sets of randomized policies-Part II

We denote the sets of all randomized policies Pπ on
∏N

i=1 Γ
i by LN := P(

∏N
i=1 Γ

i) and we

equip it with the product topology.

We define the following sets of randomized policies as subsets of LN :

LN
EX :=

{
Pπ(γ

1γ1
γ1 ∈ ·, . . . , γNγN

γN ∈ ·) = Pπ(γ
σ(1) ∈ ·, . . . , γσ(N) ∈ ·) ∀σ ∈ SN

}
LN

CO,SYM :=

{
Pπ(γ

1γ1
γ1 ∈ ·, . . . , γNγN

γN ∈ ·) =
∫

z∈[0,1]

N∏
i=1

P̃π(γ
iγ i

γ i ∈ ·|z)η(dz), η ∈ P([0, 1])
}

LN
PR,SYM :=

{
Pπ(γ

1γ1
γ1 ∈ ·, . . . , γNγN

γN ∈ ·) =
N∏

i=1

P̃π(γ
iγ i

γ i ∈ ·)
}
.

Lemma (ACC’24)
Let U be compact. Suppose that bt(·, ·) and σt(·) are uniformly bounded for all t ∈ T. Then:

1 LN
EX is convex and compact.

2 The mapping Θ : LN
EX → P(C([0, T],X) is continuous.
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Existence of Randomized Globally Optimal Solutions for PNand P∞

Theorem (ACC’24)
Consider PN and P∞. Let

• c be continuous in all its arguments.

• U be compact.

• bt(·, ·) and σt(·) be uniformly bounded for all t ∈ T.

Then:

1 There exists an exchangeable randomized globally optimal policy PN⋆
π for PN among all randomized

policies LN , i.e., PN⋆
π ∈ LN

EX.

2 There exists a symmetric privately randomized globally optimal policy P⋆
π for P∞ among all

randomized policies L, i.e., P⋆
π ∈ LPR,SYM.

3 A symmetric privately randomized globally optimal policy P⋆
π for P∞ is approximately optimal for

PN .
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Conclusion

Under sufficient conditions, we have shown that

1 Finite population convex teams: an optimal solution exists that is symmetric and

deterministic.

2 Infinite population convex teams: an optimal solution exists that is symmetric and

independently randomized. ⇐= representative agent measure-valued MDP.

3 Finite population non-convex teams: an optimal solution exists that is exchangeable and

randomized, but there exists an approximate optimal policy that is symmetric and

independently randomized for sufficiently large teams.

4 Infinite population non-convex teams: an optimal solution exists that is symmetric and

independently randomized. ⇐= representative agent measure-valued MDP.

5 Large centralized teams: a symmetric solution of N-DM mean-field sharing problem is

nearly optimal for large centralized teams ⇐= single-agent mean-field sharing MDP.

6 Justification in Agent-Based-Modeling and Team-against-Team games, via the

representative agents defining the game played in equilibrium–Agent-based-Modeling is

often used in economics, mathematical biology, and other sciences.
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