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Motivation

Large-Population Multi-Agent Interactions

@ Mixed collaborative-competitive setting with large
number of agents
Team level: competition
Within each team: collaboration

o Battlefield offense-defense, swarm robotics, sports

Key Challenges

@ Scalability: Complexity increases exponentially as
the number of agents increase

@ Solution must respect the underlying information
structure

@ Information about the opponents is often unknownJ
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Mean-Field Team Games

Problem Setting
@ Zero-sum finite horizon problem with simultaneous moves
@ Finite state and action spaces
@ Each team (Blue and Red) consists of ; homogeneous agents (i = Blue, Red)
@ Agents interact via weak coupled dynamics (transitions and rewards only depend on the
state distributions) )
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Figure: State distribution at time t is the empirical distribution p; and v,
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Information Structure

Mean-Field Information Sharing Structure

@ Each agent observes its own state (local information) and the empirical distribution
(common information) of both its team and the opponent team

@ We consider mixed Markov policies for each agent:

i U XX xP(X)xP(Y)—[0,1],
YV x Y xPX)xPQ)—[0,1],

where ¢; +(u|x; t, f1t,v¢) is the probability that Blue agent /i selects action u given its local

state x; ; and the team EDs 1 and vy; similarly for the Red agent v ¢(v|yj ¢, i, v¢)

Notation

Individual Blue agent strategy ¢; = {¢;+}/_o  Individual Red agent strategy ; = {¢; :} .,

Blue team strategy ¢™M = {(;5,-};\21 Red team strategy 1//\> = {wj}}vil
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Information Structure
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Figure: Information structure in a 2D grid world
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Optimization
o We let the Blue team maximize and the Red team minimize (general zero-sum game)

o Performance of team strategy pair (¢"1,1)"2) is given by the expected cumulative reward

T
N
t=0

Objective
When Blue team considers its worst-case performance, we have the max-min optimization:
. N- N
JN*(XSVI, yévz) = max min JNOY 2(x(’)\ll7 y(’)\b)
oM edN1 N2 W2

®MNr, N2 are the team strategies and JN* is lower game value for the finite-population game.?

?Allows agents apply different strategies, especially the opponent red agents

Panagiotis Tsiotras (Georgia Tech) Mean Field Team Games 7/25



|dentical Team Strategies

The set of identical team strategies ¢+ = ¢ Vi = 1,..., Ny is rich enough to approximate
team behaviors induced by non-identical team strategies when team size is large

Approximation Lemma (Informal)

Given a non-identical team strategy qﬁ?’l there exists an identical team strategy ¢; such that
the distribution pt41 induced by ¢ is close to the empirical distribution ,u?lil induced by gbivl

[1
Eg, [dTv(uiVil,um)} < O( N1>

For a finite set E, the total variation between two probability measures u, ' € P(E) is given by

o

drv (p, p E |u(e) — w'(e)] = 5 Hu Wy
eGE
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Intuition: A Reachability Result

o It suffices for the Blue team to
approximate all possible future ED
outcomes using the mean-fields within the
reachable set

@ There exists a MF within the reachable set
that is e-close to the (finite-population)
ED induced by that team policy

Ryt ve) = {ppes1 | Foe € Pe s.t. pren = peFe(pee, ve, 04) }

Panagiotis Tsiotras (Georgia Tech) Mean Field Team Games 9/25



Zero-Sum Coordinator Game

o Construct equivalent system, where the A
state distributions act as the common E
information to generate Blue («) and :IH

Red () coordination strategies

Coordination strategies
Ott(ltt, Vt) ﬂt(,ut, Vt)

Local strategies 1 ) l )
—_— 77:5(95;) Ut(yg) —

l l ;

@ These coordination strategies select local
policies 7; and o; that only depend on
the agent’s individual state

@ One-to-one correspondence between
identical team and coordination strategies

s d

¢f(u|X7 s V) = Oét(/% V)(U|X)
~——

Tt

o>

Ye(vly, u,v) = Be(u, v)(vly) Figure: lllustration of the coordinator game
~—_——

Ot
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Zero-Sum Coordinator Game

Problem Setting OOO 7
o . F OO _Oh vy
@ Zero-sum infinite population game fT007h
@ Players: Blue and Red coordinators L o'o ”f/f% %:xf’t
@ States: Distributions y; and v OOO i >
@ Actions: Local policies 7 and o
o Strategies: Coordination strategies o and [
@ Dynamics: Deterministic (Law of Large per1 = peFe(pe, ve, o)
Numbers) J Vty1 = Vth(,Ut, Vt, Bt)
Can be solved using: T
@ Dynamics Programming Jeoord (10, v0) = max fﬁnelg 2 re(pes ve)

@ Reinforcement Learning =
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Performance Guarantees

Main Result

The optimal Blue coordination strategy o* obtained from the infinite-population coordinator
game induces an e-optimal Blue team strategy for the finite-population game

JN*(XNl,yN2) > wN;n€i$N2 JNva*,’lﬁNz (le,yNz) > JN*(XNl,yNz) . O( /1/N)

for all xM € XM and yM € YN2 where N = min{Ny, N»}

Key Takeaways:
@ We can solve the mean-field team game assuming identical team strategies

@ Even if opponent employs a non-identical strategy to exploit our identical strategy, the
performance degradation is within a bound from the best attainable performance

@ The error diminishes as the size of the team population increases
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= Two-state example (T=2) Att = 0, all Red agents are frozen, at t = 1, y? is absorbing
ro(p,v) = n(u,v) =0 Vue Appve Dy,
ra(uv) = —v(y?)
Incentivizes Red agents to move to y? using v2 with transition probability
1

min {5((u(e) = ) + (uta®) = (1 = 7)) 1}

* Optimal Blue team strategy is to match distribution [1/v/2,1 — 1/v/2]
= Feasible only in infinite-population case

Finite-population Blue
optimal strategy is
non-identical

Blue agent either
deterministically
stays at its current
state of
deterministically
moves to the other
state

Difference

Transition probability
from y* to y2 is
0.016 (non-identical)
vs 0.518 (identical)

Ny Blue agents
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Application to MARL

Red team edge

Task location

@ State-of-the-art multi-agent reinforcement learning -
(MARL) algorithms like MADDPG (Lowe et al., 33

2017) fail to scale in situations where the number annn
of agents becomes large

o Complexities due to the training of individual
policies for each agent

@ Parameter sharing (Li et al. 2024) can help, but
NN uses all states and actions of all agents

@ MF theory approximations show promising results
(Cui et al. 2023; Yardim and He 2024)
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Salient Features of MF-MAPPO

MF-MAPPO: Mean-Field Multi-Agent Proximal Policy Optimization

@ Only requires common information in order to learn the value function (minimally
informed critic network)
— Network complexity does not scale with the number of agents

— Input to the network is much smaller in size compared to Q-function based methods (do not
require the actions as an input)

@ Simultaneous training and updates of both competing teams instead of an alternating
optimization

@ Train for N agents, deploy for M # N
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Training

Common Information-Based Critic Network
e For j € {Blue, Red}, critic Vj(yu,v) is parametrized by (;
@ Objective:

Lerivic(G) = “; TeB( (ke CJ)—RJ)

where 7 sampled from the mini-batch of size B and R/ is the discounted reward-to-go

Z’v (e, vt), j € {Blue, Red}

t'=t

o Recall that rj¢d = —rBlue
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Mean-Field Multi-Agent Proximal Policy Optimization

Actor Network
@ Blue team with identical team strategy ¢y, parametrized by Opjye
@ Objective:

B
1 ; .
L(OBiue) = B| E [mlf\(gkAk, clip(gk, 1 —¢,1+ G)Ak) +w5(¢93.ue(Xk,uk,Vk))} :
k=1

o ¢9(U|Xa/'57 V)

h = g(0) =
where & = (6) = 2 = Culx. 1,)

Ay is the GAE function sampled at time t from a trajectory with a T-step rollout
Ak =6+ (YA)0pq1 + -4 -+ (YA) Tt 16712 and w weighs the contribution of the
entropy term S and decays during training

0 = It Blue + ’YVBIue(/Jzt+1, l/t+1) - VBIue(,uty Vt)
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Constrained Rock-Paper-Scissors (cRPS)

For both teams we have:
@ State space S = {sp, 51, %}
@ Action space A = {ap, a1}
@ Deterministic transitions

@ Reward at each time step
rBlue — _Red — T Av,, where
t t By AV,

Equilibrium Distribution
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Constrained Rock-Paper-Scissors (cRPS)

sclssors
00
0.0

paper
00
1.0

0.33

Observations
@ For this initial condition, the equilibrium distribution is not reachable at t =1

o Algorithm effectively explores and learns to achieve the distribution [1/3,1/3,1/3]
(Note: Ny = N, = 1,000)
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Mixed Collaborative-Competitive Battlefield with Target Capture

o Battlefield on a 2D grid world
» Blue team: reach the target location(s)
» Red team: defend target(s)

@ Zero-sum game where rflu¢ = —rRed o

fraction of blue population at target

@ Agent state is its position and status i5 .

@ Teams must learn to remain alive, not be $oee
deactivated by the opponent team'’s agents ; ; .
(based on relative numerical advantage at each sonm §

cell) and circumnavigate obstacles

) B Figure: Example of a 4 x 4 Map with 1 Target
@ Agent observation: local position and state (Lilac Square) and 2 obstacles (Black)

distributions of both teams
o Here, N; = N>, =100
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Mixed Collaborative-Competitive Battlefield with Target Capture

Observations
@ The Blue agents learn to reach the target

@ The Red team learns to assemble and position itself at the target and deactivate
remaining Blue agents
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Mixed Collaborative-Competitive Battlefield with Target Capture
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Observations

@ The Blue agents move as a blob so that not be deactivated by the Red team (since
numerical advantage = 0)
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Mixed Collaborative-Competitive Battlefield with Target Capture
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Observations

@ The Blue agents, upon seeing the state distribution, learn to change their path and
combine with the remaining agents in order to " push through” to the target
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Animations
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GIF edited with https://ezgif.com/speed
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Conclusions and Future Work

Summary

@ Zero-sum mean-field team games with weakly coupled dynamics: mixed collaborative
and competitive

@ Common information approach with mean field sharing = equivalent coordinator
game

@ Identical team strategies with theoretical performance guarantees (performance
improves as the number of agents increase)

@ Novel common information critic based MARL algorithm for solving large scale
real-world complex team games

Future Work
@ More realistic and complex scenarios
@ Limited information/partial observability

@ Heterogeneous agents and sub-team roles/behaviors
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