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Game Setup

p peEN> up peN

N

N={1,...,N xP € QP CR" ur: Q=1L Q" >R
N players set of strategies scalar—valued payoff
function

Assumption. G is continuous concave, i.e., Vp,
@ QP non-empty, closed, convex subset of R,
@ UP(xP; x™P) =UP(x) (jointly) continuous in x = (xP; x~P),
o UP(xP; x~P) concave and C! in xP, Vx™P € QP.



Example 1: Rock-Paper-Scissors

r p s
r 1(0,0) (—/,w) (w,—])
P (Wv_l) (0’ 0) (_/7 W)
s L(—/,w) (w,=1) (0,0)

I: loss >0,w: win >0

o iPe{rp,s}
o i=(i% %) ~ reward
@ xP prob. of selection

@ UP expected reward,

0 -/ w
Llp(x)::I:XpT[w 0 —I}xﬁp
-l w 0O




Example 2: Saddle-point problems

max min f( x x
x1eQ! x2eQ?

@ designer and critic

@ designer: submits design,

Xl

@ critic: submits appraisal,

X2

o U = f(xt, x?) = —U?
“agreement /satisfaction”

Training Set% DISCrImInator

Random @ =
Generator Fake image

Generative Adversarial Network (GAN)

After a “few" simplifying assumptions:

f(x1, x?) =x1-x2



Behavioral science, ecology, wireless networks, (virtual) economy,
traffic modeling...



Game Solution

Player p's goal: given x P € Q7P Vp € N, maxypecqr UP(xP; xP)

x* = (xP*; x"P*) € Q is Nash equilibrium (NE) when no players
can benefit from unilateral deviation:

UP(xP*; x™P*) > UP(xP; x P*),¥xP € QP.Vp e N (1)

Equiv., under our concave game assumption,
(x —x)TU(x*) <0,Vx € Q (2)

U(x) = (UP)pen = (VxolUP(xP; xP)) pens (pseudo-gradient).

Players use simple rules/models to convert game information to
their strategies, hopefully leading to a NE.



NE seeking via online learning

update
internal variable

]L

xP
choose strategy

feedback

game

) xP

I-—xﬁ" opponents

A group of players learns a NE by individually:

@ choose strategies via an internal variable

e receive information (feedback) from the game

@ update own internal variable (+ “learning”)

tQ-value, dual aggregate, score, perception, model weights, etc.



Each player maps its own variable zP into a strategy xP € QP
through a mirror map CP : R — QP

CP(zP) = argmax pcqp [y”Tz” —evP(yP)|,e>0 (%)

vP: regularizer, e: regularization constant



Each player maps its own variable zP into a strategy xP € QP
through a mirror map CP : R — QP

o vP = |x?|/2 = C2(2") = mp(e™'2?) (Projection)

o vP = xPT log(xP) = CP(zP) = sz\i’(‘;—:(?lzq) (Softmax)



Each player plays the game G using strategy xP (taking into
account opponents’ x P € Q7P) and obtains partial-gradient UP

VioUP:(xP;x~P) »—>UP up



Each player maps UP back into zP via aggregation
zP = fot UP(7)d7 and the process continues indefinitely




(Continuous-Time) Mirror Descent (Nemirovski '83)

update internal variable choose strategy
UP(x zP P
( )_[ 2= Jy U"(x)dt]—-[ CP(z°) ]L
( ) xP
l UP(x) ]-—xﬁp opponents
game

@ zP: a vector of player p's internal state

e CP: “mirror map", zP +— xP e.g., Euclidean projection

@ UP: a partial-gradient
~ OUP(xP; x7P)

OxP

UP(x) = V,oUP(xP; x7P)

e x = (xP; x7P): joint strategy



Up(x)_.[ zp:fJu%x)dt]L-[ () ]i’



z CP(zP) ]Lp
Up(x)__[ P = [! Up(x)dt]—-[ (

l CP(zP) ]Lp
up(x)_{ 5 U ]_[ ,




To analyze collective behavior,
stack all p=1,...,N:

Sl
Z = .
N

z

SN

Ul
U [ ; ] U is called a pseudo-gradient.

UN




Convergence of MD

Using stacked notation,

z1 ut x1 Cel
z=|: U= : x=1: C=1 :
2N un XN cy
Can represent this entire process as,

z= /0 U(x)dr, x= CAz), (3)

0
z=U(x), x= C(2), MD

Question: when does x(t) = C.(z(t)) converge to x*?



DT

Landweber Iteration (Burger et al. 2019)
Stochastic GD (Robbins & Monro et al. 1951)

Re-weighted Bandit GD (Liu et al. 2021) Stochastic Subgradient MD (Nedic et al. 2014)

Cross learning (Cross 1973) Multiplicative Weights (Littlestone, Warmuth 1994)

Arthur model (Arthur 1993) Hedge (Freund & Schapire 1997) e-Hedge (Cohen et al. 2017)
Online Mirror Descent (OMD) (Shalev-Shwartz 2012)

Bandit MD (B I. 201
andit (Bravo et al. 2018) ’\ Discrete-time RD Hofbauer & Sigmund 2003)

Bandit GD (Flaxman et al. 2005) Dual Averaging (DA) (Nesterov 2009)

Overdamped Langevin Dyn. (Nelson 1967) Continous-Time DA (Staudigl et al. 2017)
Follow-the-regularized-leader (Piliouras et al. 2018)
Stochastic Replicator Dyn. (Cabrales 2000) Exponential learning (Sandholm et al. 2016)
Mirrored Langevin Dyn. (Hsieh, 2018) Gradient Flow (GF) (Cauchy 1847)  Natural GF (Amari 1998)
Pseudo-Gradient Dyn. (Arrow & Hurwicz 1958)
Saddle-Point Dyn. (Kose 1956) Replicator Dyn. (RD) (Taylor & Jonker, 1978)

Hessian-Riemmanian GF
Projection’Dyn. (Dupis & Nagurney) Lotka-Volterra Dyn.

Stochastic MD (Raginsky et al. 2012)

Projected Saddle Flow (Hauswirth et al., 2020) DeGroot-Fredkin map (Halder 2019)

Primal-dual GF (Feijer & Paganini (2010)) ~ Hadamard-Wirtinger flow (Wu 2020)



MD converges under one of a trio of strict assumptions

1. G is strictly monotone (Rosen '65),

(U(x)—U(X)(x—x")<0,¥x € Q\{x'} (4)

1See e.g., Mertikopoulos & Sandholm '16, Mertikopoulos & Staudigl '17,
Mertikopoulos & Zhou '19, Migot & Cojocaru 21, Laraki & Mertikopoulos '13,
Higher order game dynamics

1



MD converges under one of a trio of strict assumptions

1. G is strictly monotone (Rosen '65),

(U(x) = U(x))'(x=x') <0,¥x € Q\{x'} (4)
2. x* is a strict variationally stable state (VSS) (Smith '73),

U(x)"T(x — x*) < 0,¥x € Q\{x*} (5)
NE of strictly monotone game — strict VSS

1See e.g., Mertikopoulos & Sandholm '16, Mertikopoulos & Staudigl '17,
Mertikopoulos & Zhou '19, Migot & Cojocaru 21, Laraki & Mertikopoulos '13,
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MD converges under one of a trio of strict assumptions

1. G is strictly monotone (Rosen '65),

(U(x) = U(x))'(x=x') <0,¥x € Q\{x'} (4)
2. x* is a strict variationally stable state (VSS) (Smith '73),

U(x)"(x — x*) < 0,¥x € Q\{x*} (5)
NE of strictly monotone game — strict VSS
3. x* is a strict Nash equilibrium (Harsanyi '73),

UP(xP; x7P*) < UP(xP*; x7P*),VxP € QP\{xP*},Vp e N (6)

| U(x*)T(x — x*) < 0,¥x € Q\{x*} (7)

strict NE = strict VSS in finite games

1See e.g., Mertikopoulos & Sandholm '16, Mertikopoulos & Staudigl '17,
Mertikopoulos & Zhou '19, Migot & Cojocaru 21, Laraki & Mertikopoulos '13,
Higher order game dynamics

1



Two wider settings MD can fail to converge
1. G is merely monotone (= stable game) (Hofbauer et al. '09)
(U(x)=U(x')) (x—x") <0,¥x € Q (8)
2. x* is a mere variationally stable state (VSS) (Smith, '82)
U(x)T(x—x*) < 0,¥x € Q (9)

NE of merely monotone game — mere VSS

Example. (Two-Player Rock-Paper-Scissors (RPS))

0 -1 1
A= 1 0 —1| UP(xP;x9) =xP"ax9 xP e Simplex
-1 1 0

RPS with 4 is merely monotone = unique interior NE
x* = (xP*),xP* =(1/3,1/3,1/3) is a mere VSS.



Two wider settings MD can fail to converge
1. G is merely monotone (= stable game) (Hofbauer et al. '09)
(U(x)—U(K))(x—=x") <0,¥x € Q (8)
2. x* is a mere variationally stable state (VSS) (Smith, '82)
U(x)T(x—x*) < 0,¥x € Q 9)
NE of merely monotone game — mere VSS

Example. (Non-Monotone Game with Mere VSS)

N
UP(xP,x7P) = — [ x".xP € [0,1] (10)
p=1

Game not merely monotone for N > 2, NE x* = 0 is a mere VSS.



Long-run strategy generated by MD corresponds to NE in some
games

But...

MD fails to converge to NE for a wide range of games, even simple
ones

S P S P

Fundamental limitation in applications



Overcoming non-convergence of MD: time-averaging

Mirror descent with time-averaging (MDA) (e.g.,
Mertikopoulos & Sandholm, '16, Hofbauer, Sorin & Viossat '09),

2= U(x), x= C(2), Xavg(t) = t 1 /otX(T)dT (MDA)

Converges exactly in ZS game with interior NE, which could
be a mere VSS.

e Requires all to use time-averaging =—> not “game-realistic”.

e Not robust to slight game parameter perturbation.



Alternative: Design via passivity principles
Observation: MD fails in games with specific types of properties

R

w 0 -/ | =w

- w 0

S P
This is an example of a merely monotone game:

(U(x)—U(x")) (x—x")<0,¥x,x" € Q. (2)

monotonicity product




w 0 -/ | >w .
- w 0 °

S P
This is an example of a y-weakly monotone game:
(U()=U() (x=x) < pllx = X'|I3, 9%, X' € Q. (3)

Higher ;1 > 0, “harder” the game, “worse” the behavior.



Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.




Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.

3.1 Equilibrium Independent Dissipativity (EID)
Consider the system
%x(t) =fC®, u®) (3.3)
y(®) = h(x(@), u(®) 34
where x(f) € R", u(t) € R™, y(t) € RP, and suppose there exists a set 2~ C R”"

where, for every X € 2, there is a unique # € R™ satisfying f(x, #) = 0. Thus #
and y £ h(x, i) are implicit functions of X.

Definition 3.1 We say that the system above is equilibrium independent dis-
sipative (EID) with supply rate s(:, -) if there exists a continuously differen-
tiable storage function V : R"x 2+ Rsatisfying, V(x, X, ) € R"x % xR™

Vx,x) =0, V(x,x)=0, V.V (e, O f(x, u) < s@—it, y—3). (3.5)

From Arcak, Meissen, Packard (2016)



Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.

3.1 Equilibrium Independent Dissipativity (EID)
Consider the system
Sx0) = £ ), u) 33
y(®) = h(x (@), u(®) 34
where x(f) € R", u(t) € R™, y(t) € RP, and suppose there exists a set 2~ C R”"

where, for every X € 27, there is a unique # € R satisfying f(x, #) = 0. Thus &
and ¥ £ h(x, it) are implicit functions of X.

Definition 3.1 We say that the system above is equilibrium independent dis-
sipative (EID) with supply rate s(-, -) if there exists a continuously differen-
tiable storage function V : R"x 2" > Rsatisfying, V(x, X, u) € R"x 2" xR™

VED =20, VED=0, ViV@&DF&w <s@—iy-y. 35

From Arcak, Meissen, Packard (2016)

Idea: add passivity/dissipativity (more energy dissipation) to the
entire system.



DMD

@ Let players re-evaluate internal variable z during play.

@ Call this discounted mirror descent (DMD).



—
c
—~
X
S~—
e
X

DMD is “output-strictly” passive.

There exists a storage function V associated with DMD s.t.

V < (x = %) "(U(x) = U(x)) = ellx = x]13



S P S P

Theorem!:2: G merely monotone matrix game, x(t) — x¢ (x*
logit equilibrium).

x¢ =+ x*ase—0

!B. Gao, L. Pavel, “On Passivity and Reinforcement Learning in Finite
Games”, in 57th IEEE CDC, 2018

2B. Gao, L. Pavel, “On Passivity, Reinforcement Learning and Higher-Order
Learning in Multi-Agent Finite Games”, in IEEE TAC, 2021



Overcoming non-convergence: discounting

Discounted mirror descent (DMD) (Coucheney et al. '15, Gao
& Pavel '21)

z=U(x) —z,x= C(z) DMD

Converges in merely monotone game, hence to a mere VSS.
e Does not converge exactly (in general).

Reason: when dynamics settle, feedback term —z does not
vanish, perturbing the solution away from x*:

z = DMD = MD + non-vanishing feedback



Higher-order learning MD

x(t) — x*inexact in general

Many games lack monotonicity



Higher-Order learning MD

A~

Can x(t) — x* exactly (irrespective of €)?

Can we do it without monotonicity?



DMD

U ! - ﬂ

Source of inexactness: feedback term —z is non-vanishing at
rest, perturbing the solution away from x*.



DMD

PR P =

Idea: use a new feedback that goes away as x reaches x*.



Introduce y = 5(x — y), 8 > 0. Call it second-order MD (MD?2).

Interpretation: Do regularization but without perturbing the
optimal solution.



At rest, 0 = U(x) = x an interior NE.



Why Second-Order MD? What kind of second-order?

Take time derivative of z and re-arrange,

= e (z) —aldc(z) =Bl |z+ BUX),
x = C(2),

MD2 is Unlike straight second-order integration of payoffs, Laraki &

(12)

Mertikopoulos'13, which has the same (non-)convergence properties as MD.

MD2 = dual-space “heavy-ball method”, feedback modified, built
on passivity-inspired principles.



Main Result: MD2 converges to interior mere VSS

Assumption. Mirror map C? is generated from a regularizer v

that is C2 and either Legendre (strictly convex + boundary
conditions) or strongly convex.

This assumption covers virtually all mirror maps in the literature.



Theorem®°: x(t) — x* an interior mere variationally stable
state (VSS), defined as,

U(x)'(x—x*) < 0,¥x € Q. (4)

variational inequality

A type of NE.

®°B. Gao and L. Pavel, “Second-order mirror descent: exact convergence
beyond strictly stable equilibria in concave games,” in 60th IEEE CDC, 2021.

®B. Gao and L. Pavel, “Second-Order Mirror Descent: Convergence in
Games Beyond Averaging and Discounting,” in IEEE TAC, 2024.



Theorem®°: x(t) — x* an interior mere variationally stable
state (VSS), defined as,

U(x)'(x—x*) < 0,¥x € Q. (4)

variational inequality

Key advantage: no monotonicity of G needs to be assumed.

®°B. Gao and L. Pavel, “Second-order mirror descent: exact convergence
beyond strictly stable equilibria in concave games,” in 60th IEEE CDC, 2021.

®B. Gao and L. Pavel, “Second-Order Mirror Descent: Convergence in
Games Beyond Averaging and Discounting,” in IEEE TAC, 2024.



MD?2 Enjoys No Regret

RegretP(t) = yrpeagp % ({tl/l”(y”; x"P(1)) —UP(x(7))dr  (15)

Previous result (Mertikopoulos, Papadimitriou, Piliouras, '18):
MD achieves no-regret in finite games,

lim sup,_, . Regret?(t) < 0,Vp, (16)
but cannot converge in zero-sum finite games with interior NE.
Our result: MD2 achieves no-regret in concave games with

compact action sets (e.g., finite games), and converges in
zero-sum games with interior mere VSS.



Second-order variant of the continuous-time mirror descent
dynamics (MD) = MD2.

Feedback

MD2

=CD=-
(_game )

MD2 has the following benefits,
@ Converges to Nash equilibrium without global game properties
(e.g., (pseudo/quasi-)monotonicity)
o Converges beyond what MD is capable of without using
additional techniques such as averaging or discounting
@ Achieves exponential rate of convergence (~ slight mod.)
@ Achieves no-regret



Simulation: RPS Game

UP(xP; x9) = xPT ax9

x* = (xP*),xP* = (1/3,1/3,1/3) is a mere VSS

BWENVIG

MD2



Simulation: RPS Game

0 -12 1
4= 1 0 —12| UP(xP;x9)=xP"axd
-12 1 0

x* = (xP*),xP* = (1/3,1/3,1/3) is not a mere VSS

9\ /®

MD MDA MD2

MD2 still converges (without any tuning) = MD2 is “robust” near
the mere VSS!



Simulation: Generative Adversarial Network

Construct 6 = x', w = x? s.t. Gg(Z) recovers mean and var of X.
U (xEx%) = ) (0 + 02 = 0 (D) 8 (v =) = —UP(x% 1),

Game not merely monotone, but x* = ((o,v),(0,0)) is mere VSS.
01 , 0> are estimates of mean and var.




Parting Message

e MD2 is the systematic generalization of MD.
Allows to characterize discrete-time MD2 in semi-bandit
and full-bandit setups.

e Future Work:

e Systematic methods: higher-order for learning in games
with coupled constraints (GNE)? (see CDC'24), continuous to
discrete-time algorithms while preserving properties?

e Other questions: distributed settings, additional
constraints, discontinuity, non-convexity, even higher-orders,
asynchrony, delays, time-varying, more sophisticated players...
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