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Game Setup

G = (N , (Ωp)p∈N , (Up)p∈N )

N = {1, . . . ,N}
N players

xp ∈ Ωp ⊆ Rnp

set of strategies
Up : Ω =

∏N
p=1 Ωp → R

scalar-valued payoff
function

Assumption. G is continuous concave, i.e., ∀p,

Ωp non-empty, closed, convex subset of Rnp ,

Up(xp; x−p) = Up(x) (jointly) continuous in x = (xp; x−p),

Up(xp; x−p) concave and C1 in xp, ∀x−p ∈ Ω−p.



Example 1: Rock-Paper-Scissors

r p s[ ]r (0, 0) (−l ,w) (w ,−l)
p (w ,−l) (0, 0) (−l ,w)
s (−l ,w) (w ,−l) (0, 0)

l : loss > 0,w : win > 0

ip ∈ {r,p, s}
i = (i1; i2) ∼ reward

xp prob. of selection

Up expected reward,

Up(x) = ±xp>
[

0 −l w
w 0 −l
−l w 0

]
x¬p

b

b

b

b

x
p= (xp1, x

p
2, x

p
3)b



Example 2: Saddle-point problems

max
x1∈Ω1

min
x2∈Ω2

f (x1, x2)

designer and critic

designer: submits design,
x1

critic: submits appraisal,
x2

U1 = f (x1, x2) = −U2

“agreement/satisfaction”

Generative Adversarial Network (GAN)

After a “few” simplifying assumptions:

f (x1, x2) = x1 · x2



Behavioral science, ecology, wireless networks, (virtual) economy,
traffic modeling...



Game Solution

Player p’s goal: given x−p ∈ Ω−p,∀p ∈ N ,maxxp∈Ωp Up(xp; x−p)

x? = (xp?; x−p
?
) ∈ Ω is Nash equilibrium (NE) when no players

can benefit from unilateral deviation:

Up(xp?; x−p
?
) ≥ Up(xp; x−p

?
),∀xp ∈ Ωp,∀p ∈ N (1)

Equiv., under our concave game assumption,

(x − x?)>U(x?) ≤ 0,∀x ∈ Ω (2)

U(x) = (Up)p∈N = (∇xpUp(xp; x−p))p∈N (pseudo-gradient).

Players use simple rules/models to convert game information to
their strategies, hopefully leading to a NE.



NE seeking via online learning

xp

zp xp

x¬p

internal variable
update

choose strategy

opponents
game

feedback

A group of players learns a NE by individually:

choose strategies via an internal variable†

receive information (feedback) from the game

update own internal variable (← “learning”)

†Q-value, dual aggregate, score, perception, model weights, etc.



Each player maps its own variable zp into a strategy xp ∈ Ωp

through a mirror map Cp
ε : Rnp → Ωp

Ωp
Cp
ε : zp 7→ xp

Ω−p

xp

zp

Up

Cp
ε (zp) = argmaxyp∈Ωp

[
yp>zp − εvp(yp)

]
, ε > 0 (?)

vp: regularizer, ε: regularization constant



Each player maps its own variable zp into a strategy xp ∈ Ωp

through a mirror map Cp
ε : Rnp → Ωp

Ωp
Cp
ε : zp 7→ xp

Ω−p

xp

zp

Up

vp = ‖xp‖2
2/2⇒ Cp

ε (zp) = πΩp(ε−1zp) (Projection)

vp = xp> log(xp)⇒ Cp
ε (zp) = exp(ε−1zp)∑

q∈N exp(ε−1zq)
(Softmax)



Each player plays the game G using strategy xp (taking into
account opponents’ x−p ∈ Ω−p) and obtains partial-gradient Up

Ωp

xp

Ω−p

x−p

∇xpUp:(xp;x−p) 7→Up

zp

Up



Each player maps Up back into zp via aggregation
zp =

∫ t
0 Up(τ)dτ and the process continues indefinitely

Ωp

xp

Ω−p

x−p

zp

Up

zp =
∫ t

0 Up(τ)dτ



(Continuous-Time) Mirror Descent (Nemirovski ’83)

zp =
∫
t

0
Up(x)dt Cp(zp)

xp

Up(x)

zp xp

x¬p opponents

update internal variable choose strategy

game

Up(x)

zp: a vector of player p’s internal state

Cp: “mirror map”, zp 7→ xp e.g., Euclidean projection

Up: a partial-gradient

Up(x) = ∇xpUp(xp; x¬p) =
∂Up(xp; x¬p)

∂xp

x = (xp; x¬p): joint strategy



z
p =

∫
t

0
U
p(x)dt C

p(zp)

x
p

U
p(x)

z
p

x
p

x
¬p

U
p(x)

1
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z
p =

∫
t

0
U
p(x)dt C

p(zp)

x
p

U
p(x)

z
p

x
p

x
¬p

U
p(x)

żp = Up(x) Cp(zp)

xp

Up(x)

zp xp

x¬p

Up(x)



ż = U(x) C(z)

x
U(x)

z

MD

x

To analyze collective behavior,
stack all p = 1, . . . ,N:

z =

[
z1

...
zN

]
U =

[
U1

...
UN

]

x =

[
x1

...
xN

]
C =

[
C1

...
CN

]
U is called a pseudo-gradient.



Convergence of MD

ż = MD

Game

Using stacked notation,

z =

[
z1

...
zN

]
U =

[
U1

...
UN

]
x =

[
x1

...
xN

]
Cε =

[
C1
ε

...
CN
ε

]

Can represent this entire process as,

z =
∫ t

0
U(x)dτ, x = Cε(z), (3)

m
ż = U(x), x = Cε(z), MD

Question: when does x(t) = Cε(z(t)) converge to x??



MD

Stochastic MD (Raginsky et al. 2012)
Pseudo-Gradient Dyn. (Arrow & Hurwicz 1958)

Saddle-Point Dyn. (Kose 1956)

Gradient Flow (GF) (Cauchy 1847) Natural GF (Amari 1998)

Replicator Dyn. (RD) (Taylor & Jonker, 1978)

Hessian-Riemmanian GF

Lotka-Volterra Dyn.

Cross learning (Cross 1973)

Arthur model (Arthur 1993)

Projection Dyn. (Dupis & Nagurney)

Projected Saddle Flow (Hauswirth et al., 2020)

Mirrored Langevin Dyn. (Hsieh, 2018)

Continous-Time DA (Staudigl et al. 2017)
Overdamped Langevin Dyn. (Nelson 1967)

Stochastic Replicator Dyn. (Cabrales 2000)

Online Mirror Descent (OMD) (Shalev-Shwartz 2012)

Hedge (Freund & Schapire 1997)

Multiplicative Weights (Littlestone, Warmuth 1994)

Discrete-time RD Hofbauer & Sigmund 2003)

Primal-dual GF (Feijer & Paganini (2010))

Bandit MD (Bravo et al. 2018)

ǫ-Hedge (Cohen et al. 2017)

Stochastic Subgradient MD (Nedic et al. 2014)

Bandit GD (Flaxman et al. 2005)

Stochastic GD (Robbins & Monro et al. 1951)

Follow-the-regularized-leader (Piliouras et al. 2018)

Exponential learning (Sandholm et al. 2016)

Dual Averaging (DA) (Nesterov 2009)

CT

DT

Re-weighted Bandit GD (Liu et al. 2021)

Landweber Iteration (Burger et al. 2019)

DeGroot-Fredkin map (Halder 2019)

Hadamard-Wirtinger flow (Wu 2020)



8/23MD converges under one of a trio of strict assumptions 1

1. G is strictly monotone (Rosen ’65),

(U(x)−U(x ′))>(x−x ′)<0, ∀x ∈ Ω\{x ′} (4)

2. x? is a strict variationally stable state (VSS) (Smith ’73),

U(x)>(x − x?) < 0,∀x ∈ Ω\{x?} (5)

NE of strictly monotone game =⇒ strict VSS

3. x? is a strict Nash equilibrium (Harsanyi ’73),

Up(xp; x−p?) < Up(xp?; x−p?), ∀xp ∈ Ωp\{xp?},∀p ∈ N (6)

or,
U(x?)>(x − x?) < 0,∀x ∈ Ω\{x?} (7)

strict NE = strict VSS in finite games
1See e.g., Mertikopoulos & Sandholm ’16, Mertikopoulos & Staudigl ’17,

Mertikopoulos & Zhou ’19, Migot & Cojocaru ’21, Laraki & Mertikopoulos ’13,
Higher order game dynamics
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Two wider settings MD can fail to converge

1. G is merely monotone (= stable game) (Hofbauer et al. ’09)

(U(x)−U(x ′))>(x−x ′) ≤ 0,∀x ∈ Ω (8)

2. x? is a mere variationally stable state (VSS) (Smith, ’82)

U(x)>(x−x?) ≤ 0,∀x ∈ Ω (9)

NE of merely monotone game =⇒ mere VSS

Example. (Two-Player Rock-Paper-Scissors (RPS))

A =




0 −1 1
1 0 −1
−1 1 0


 Up(xp; xq) = xp>Axq, xp ∈ Simplex

RPS with A is merely monotone =⇒ unique interior NE
x? = (xp?), xp? = (1/3, 1/3, 1/3) is a mere VSS.



Two wider settings MD can fail to converge

1. G is merely monotone (= stable game) (Hofbauer et al. ’09)

(U(x)−U(x ′))>(x−x ′) ≤ 0,∀x ∈ Ω (8)

2. x? is a mere variationally stable state (VSS) (Smith, ’82)

U(x)>(x−x?) ≤ 0,∀x ∈ Ω (9)

NE of merely monotone game =⇒ mere VSS

Example. (Non-Monotone Game with Mere VSS)

Up(xp, x−p) = −
N∏

p=1

xp, xp ∈ [0, 1] (10)

Game not merely monotone for N > 2, NE x? = 0 is a mere VSS.



Long-run strategy generated by MD corresponds to NE in some
games

But...

MD fails to converge to NE for a wide range of games, even simple
ones

b
x
⋆

b

b

b

R

PS

b
x
⋆

b

b

b

R

PS

Fundamental limitation in applications



Overcoming non-convergence of MD: time-averaging

ż = MD

Game

t−1
∫ t

0

Mirror descent with time-averaging (MDA) (e.g.,
Mertikopoulos & Sandholm, ’16, Hofbauer, Sorin & Viossat ’09),

ż = U(x), x = Cε(z), xavg(t) = t−1

∫ t

0
x(τ)dτ (MDA)

• Converges exactly in ZS game with interior NE, which could
be a mere VSS.

• Requires all to use time-averaging =⇒ not “game-realistic”.

• Not robust to slight game parameter perturbation.



Alternative: Design via passivity principles

Observation: MD fails in games with specific types of properties

 0 −l w
w 0 −l
−l w 0

 l = w
b
x
⋆

b

b

b

R

PS

This is an example of a merely monotone game:

(U(x)−U(x ′))>(x−x ′)︸ ︷︷ ︸
monotonicity product

≤0,∀x , x ′ ∈ Ω. (2)



 0 −l w
w 0 −l
−l w 0

 l > w
b
x
⋆

b

b

b

R

PS

This is an example of a µ-weakly monotone game:

(U(x)−U(x ′))>(x−x ′)≤µ‖x − x ′‖2
2, ∀x , x ′ ∈ Ω. (3)

Higher µ ≥ 0, “harder” the game, “worse” the behavior.



Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.



Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.

From Arcak, Meissen, Packard (2016)



Observation: (weak) monotonicity of game = (lack of) energy
dissipation or passivity/dissipativity of feedback subsystem U.

From Arcak, Meissen, Packard (2016)

Idea: add passivity/dissipativity (more energy dissipation) to the
entire system.



ż = U(x)− z C(z; ǫ)

x
U(x)

z x

DMD

Let players re-evaluate internal variable z during play.

Call this discounted mirror descent (DMD).



1

s+ 1

C(z; ǫ)

x
U(x)

z

DMD

x

DMD is “output-strictly” passive.

There exists a storage function V associated with DMD s.t.

V̇ ≤ (x − x)>(U(x)− U(x))− ε‖x − x‖2
2



b
x
⋆

b

b

b

R

PS

b
x
⋆

bx
ǫ

b

bb

R

S P

Theorem1,2: G merely monotone matrix game, x(t)→ xε (xε

logit equilibrium).

xε → x? as ε→ 0

1B. Gao, L. Pavel, “On Passivity and Reinforcement Learning in Finite
Games”, in 57th IEEE CDC, 2018

2B. Gao, L. Pavel, “On Passivity, Reinforcement Learning and Higher-Order
Learning in Multi-Agent Finite Games”, in IEEE TAC, 2021



Overcoming non-convergence: discounting

ż = MD

Game

−z

Discounted mirror descent (DMD) (Coucheney et al. ’15, Gao
& Pavel ’21) ,

ż = U(x) −z , x = Cε(z) DMD

• Converges in merely monotone game, hence to a mere VSS.
• Does not converge exactly (in general).

Reason: when dynamics settle, feedback term −z does not
vanish, perturbing the solution away from x?:

ż = DMD = MD + non-vanishing feedback



Higher-order learning MD

b
x
⋆

bx
ǫ

x(t) → x? inexact in general

Many games lack monotonicity



Higher-Order learning MD

bx
⋆

bx
ǫ

b

b ?x
ǫ

x
⋆

Can x(t) → x? exactly (irrespective of ε)?

Can we do it without monotonicity?



bż = U(x)− z Cǫ(z)

x
U(x)

z

DMD

x

x⋆

bxǫ

b

b ?xǫ

x⋆

Source of inexactness: feedback term −z is non-vanishing at
rest, perturbing the solution away from x?.



bż = U(x)− z Cǫ(z)

x
U(x)

z

DMD

x

x⋆

bxǫ

b

b ?xǫ

x⋆

Idea: use a new feedback that goes away as x reaches x?.



ż = U(x) − α(x− y) Cǫ(z)

x
U(x)

z

MD2

x

ẏ = β(x − y) x

x

y

Introduce ẏ = β(x − y), β > 0. Call it second-order MD (MD2).

Interpretation: Do regularization but without perturbing the
optimal solution.



0 = U(x)− 0 Cǫ(z)

x
U(x)

z

MD2

x

0 = x− y x

x

y

At rest, 0 = U(x) =⇒ x an interior NE.



13/23Why Second-Order MD? What kind of second-order?

ż = MD

Game

− ̇̇ y ˙ 

z̈ = MD2

Game

U ∈ C1

Take time derivative of ż and re-arrange,

z̈  =
[
JU◦Cε (z) − α JCε (z) − βI

]
ż + βU(x),

x = Cε(z),
(12)

MD2 is Unlike straight second-order integration of payoffs, Laraki & 
Mertikopoulos’13, which has the same (non-)convergence properties as MD.

MD2 ∼= dual-space “heavy-ball method”, feedback modified, built 
on passivity-inspired principles.



Main Result: MD2 converges to interior mere VSS

Assumption. Mirror map Cεp is generated from a regularizer vp
that is C2 and either Legendre (strictly convex + boundary 
conditions) or strongly convex.

This assumption covers virtually all mirror maps in the literature.



b
x
⋆

bx
ǫ b

x
⋆

Theorem5,6: x(t)→ x? an interior mere variationally stable
state (VSS), defined as,

U(x)>(x−x?) ≤ 0︸ ︷︷ ︸
variational inequality

,∀x ∈ Ω. (4)

A type of NE.

5B. Gao and L. Pavel, “Second-order mirror descent: exact convergence
beyond strictly stable equilibria in concave games,” in 60th IEEE CDC, 2021.

6B. Gao and L. Pavel, “Second-Order Mirror Descent: Convergence in

Games Beyond Averaging and Discounting,” in IEEE TAC, 2024.
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b
x
⋆

bx
ǫ b

x
⋆

Theorem5,6: x(t)→ x? an interior mere variationally stable
state (VSS), defined as,

U(x)>(x−x?) ≤ 0︸ ︷︷ ︸
variational inequality

,∀x ∈ Ω. (4)

Key advantage: no monotonicity of G needs to be assumed.

5B. Gao and L. Pavel, “Second-order mirror descent: exact convergence
beyond strictly stable equilibria in concave games,” in 60th IEEE CDC, 2021.

6B. Gao and L. Pavel, “Second-Order Mirror Descent: Convergence in

Games Beyond Averaging and Discounting,” in IEEE TAC, 2024.



MD2 Enjoys No Regret

Regretp(t) = max
yp∈Ωp

1

t

t
∫
0
Up(yp; x−p(τ))− Up(x(τ))dτ (15)

Previous result (Mertikopoulos, Papadimitriou, Piliouras, ’18):
MD achieves no-regret in finite games,

lim supt→∞ Regretp(t) ≤ 0,∀p, (16)

but cannot converge in zero-sum finite games with interior NE.

Our result: MD2 achieves no-regret in concave games with
compact action sets (e.g., finite games), and converges in
zero-sum games with interior mere VSS.



Second-order variant of the continuous-time mirror descent 
dynamics (MD) ⇒ MD2.

ż = MD

Game

Feedback

MD2

MD2 has the following benefits,

Converges to Nash equilibrium without global game properties
(e.g., (pseudo/quasi-)monotonicity)

Converges beyond what MD is capable of without using
additional techniques such as averaging or discounting

Achieves exponential rate of convergence (∼ slight mod.)

Achieves no-regret



Simulation: RPS Game

A =




0 −1 1
1 0 −1
−1 1 0


 Up(xp; xq) = xp>Axq

x? = (xp?), xp? = (1/3, 1/3, 1/3) is a mere VSS

MD MDA MD2



Simulation: RPS Game

A =




0 −1.2 1
1 0 −1.2
−1.2 1 0


 Up(xp; xq) = xp>Axq

x? = (xp?), xp? = (1/3, 1/3, 1/3) is not a mere VSS

MD MDA MD2

MD2 still converges (without any tuning) ⇒ MD2 is “robust” near
the mere VSS!



Simulation: Generative Adversarial Network

Construct θ = x1,w = x2 s.t. Gθ(Z) recovers mean and var of X .

U1(x1; x2) = x2
1 (σ2 +υ2−∑2

i=1(x1
i )2)+x2

2 (υ−x1
2 ) = −U2(x2; x1),

Game not merely monotone, but x? = ((σ, υ), (0, 0)) is mere VSS.
θ1 , θ2 are estimates of mean and var.
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Parting Message

• MD2 is the systematic generalization of MD.
Allows to characterize discrete-time MD2 in semi-bandit

and full-bandit setups.

• Future Work:
• Systematic methods: higher-order for learning in games

with coupled constraints (GNE)? (see CDC’24), continuous to
discrete-time algorithms while preserving properties?

• Other questions: distributed settings, additional
constraints, discontinuity, non-convexity, even higher-orders,
asynchrony, delays, time-varying, more sophisticated players...
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