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Epidemics Research in the Control Systems Community
Partial list of related articles:

» E. D. Sontag, "An explicit formula for minimizing the infected peak in an
SIR epidemic model when using a fixed number of complete lockdowns,”
International Journal of Robust and Nonlinear Control (2021), pp. 1-24.

» P.E. Paré, C.L. Beck, T. Basar, "Modeling, estimation, and analysis of
epidemics over networks: an overview,” Annual Reviews in Control, 50
(2020), pp. 345-360.

» W. Mei, S. Mohagheghi, S. Zampieri, F. Bullo, "On the dynamics of
deterministic epidemic propagation over networks Annual Reviews in
Control,” 44 (2017), pp. 116-128.

» C. Nowzari, V. M. Preciado, and G. J. Pappas, “Optimal resource
allocation for control of networked epidemic models,” IEEE TCNS, vol. 4,
no. 2, pp. 159-169, Jun. 2017.

» V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J.

Pappas, “Optimal resource allocation for network protection against
spreading processes,” IEEE TCNS, vol. 1, no. 1, pp. 99— 108, Mar. 2014.
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Incorporating A Population’s Strategic Behavior

= A. Ahuja, "How a US agency hopes to predict disease just like the
weather,” Financial Times, February 2021.

» Modeling and mitigation of epidemics are national priorities.

» "Epidemiology is not physics. A large part of epidemiological
modelling is based on human behaviour, which remains largely
unpredictable”, Professor Graham Medley head of infectious disease
modelling at the London School of Hygiene and Tropical Medicine.
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Incorporating A Population’s Strategic Behavior

= A. Ahuja, "How a US agency hopes to predict disease just like the
weather,” Financial Times, February 2021.

» Modeling and mitigation of epidemics are national priorities.

» "Epidemiology is not physics. A large part of epidemiological
modelling is based on human behaviour, which remains largely
unpredictable”, Professor Graham Medley head of infectious disease
modelling at the London School of Hygiene and Tropical Medicine.

= J. Interlandi, " Inside the C.D.C.'s Pandemic "Weather Service',”
The New York Times, November 2021.

»  “We know that people’s behavior, the mode of transmission and the
virus'’s characteristics all play a role. But we don't have a detailed,
quantitative understanding of how all these forces interact.” With
Covid, the biggest wild card has been human behavior.
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Epidemics Research and Social Dynamics

Partial list of related articles:

» K Paarporn, C. Eksin, "SIS epidemics coupled with evolutionary social
distancing dynamics,” 2023 American Control Conference (ACC), 2023.

» B. Buonomo, P. Manfredi, and A. dOnofrio, “Optimal time-profiles of
public health intervention to shape voluntary vaccination for childhood
diseases,” Mathematical Biology, vol. 78, pp. 1089-1123, Mar. 2019.

» A. R. Hota and S. Sundaram, “Game-theoretic vaccination against
networked SIS epidemics and impacts of human decision-making,” IEEE
Control Netw. Syst., vol. 6, no. 4, pp. 1461-1472, Dec. 2019.

» M.A.Amaral, M.M.deOliveira, and M.A.Javarone, “An epidemiological
model with voluntary quarantine strategies governed by evolutionary game
dynamics,” Chaos, Solitons & Fractals, vol. 143, p. 110616, Feb. 2021.

» K. A. Kabir and J. Tanimoto, “Evolutionary game theory modeling to
represent the behavioural dynamics of economic shutdowns and shield
immunity in the COVID-19 pandemic,” R. Soc. Open Sci., vol. 7, no.
201095, Sep. 2020.
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=> Systematic design method, with guarantees.
=> Optimal endemic equilibrium: lowest fraction of infected individuals.
=> Budgetary constraints on long term average spending.
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Key References For Our Approach and Framework
All the material covered in this talk is discussed in detail in the papers:

> N.C. Martins, J. Certério, R.J. La, " Epidemic population games
and evolutionary dynamics,” Automatica, 2023.

> J. Certério, N.C. Martins, R.J. La, "Epidemic Population Games
With Nonnegligible Disease Death Rate,” IEEE Control Systems
Letters 6, 3229-3234.
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Key References For Our Approach and Framework
All the material covered in this talk is discussed in detail in the papers:

> N.C. Martins, J. Certério, R.J. La, " Epidemic population games
and evolutionary dynamics,” Automatica, 2023.

> J. Certério, N.C. Martins, R.J. La, "Epidemic Population Games
With Nonnegligible Disease Death Rate,” IEEE Control Systems
Letters 6, 3229-3234.

Followup work:

> J. Certério, R.J. La, N.C. Martins, " Epidemic Population Games for
Policy Design: Two Populations with Viral Reservoir Case Study,”
CDC, 2023.

= J. Certério, N.C. Martins, R. J. La and M. Arcak, "Incentive
Designs for Learning Agents to Stabilize Coupled Exogenous
Systems (1),” CDC, 2024.

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, Italy, 2024.



Epidemic Mitigatio Technical Framework Optimal Equilibrium G A Stabilizing Solution

©08000000000000000

Normalized SIRS Model

Model not fully known

Population State

(Strategic Behavior of Population]

Effect on Epidemic

Y

1
- - : Epidemic Dynamics!
Epidemic State 4 !

We wish to design Normalized SIRS model

[Incentive Mechanism

Martins

CDC Workshop on Large Population Teams



Epidemic Mitigation Technical Framework Optimal Equilibrium G A Stabilizing Solution Thanks
000800000000000000

Normalized SIRS Model

( 1

Definition (Susceptible-Infected-Recovered-Susceptible)

Normalizing (Kermack & McKendrick'27), we get

I(t) = Bo)(S1I(t) — o),
R(t) = vI(t) — wR(),

where I, R and S := (1 — I — R) take values in [0,1] and are the
proportions of the population which are infectious, have recovered and are
susceptible to infection, respectively. Here o :=~ + 6 and w := ¢ + 0,
where v and 1 denote the daily recovery rate and the daily rate at which

recovered individuals become susceptible (due to waning immunity),

respectively. The daily birth rate is 6 (newborns are susceptible).
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Normalizing (Kermack & McKendrick’27), we get

I®) = (B&(1 — 1) — R@) — a)1(®),

R(t) = vI(t) — wR(®).
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Normalized SIRS Model

Definition (Susceptible-Infected-Recovered-Susceptible)
Normalizing (Kermack & McKendrick'27), we get

It = (B&)(1 — 1) — R(t) — o)1 (1),

R(t) = vI(t) — wR().

- J

The estimated mean recovery time and immunity duration for COVID-19 are
respectively approximately 10 days and 2-9 months, yielding v ~ 0.1 and
1 € [0.0037,0.017]. Recall: o0 :=~v+ 60 and w:=¢ + 6.
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Normalized SIRS Model

( 1

Definition (Susceptible-Infected-Recovered-Susceptible)

Normalizing (Kermack & McKendrick'27), we get

Ity = (B)(1 — I(t) — R(t)) — 0)I(#),
R(t) = vI(t) — wR(®).

Remark

Notice that for constant B = > o, the non-trivial endemic equilibrium is

IFi=n(1-3), "=Q1-n)(1-3), n:= et
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Normalized SIRS Model

( 1

Definition (Susceptible-Infected-Recovered-Susceptible)
Normalizing (Kermack & McKendrick’'27), we get

Ity = (B~ 1) — R) — a)1(¢),

R(t) = vI(t) — wR().

Remark
With B = 8 > o, we get the Lyapunov function (O’'Regan et al.’10)
¢ g

S(I,R)=(I—-1°)+1I° 1n7+%(R—Re)2, (I,R) € (0,1] x [0, 1].
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Transmission Rate Model

The following are the main tenets determining 5(¢):
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Transmission Rate Model

The following are the main tenets determining 5(¢):

e Strategy set {1,...,n}, with n > 2.
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e Strategy set {1,...,n}, with n > 2.

=> Nonatomic population state z in X := {z € R, | >iL, z; = 1}.
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Transmission Rate Model

The following are the main tenets determining 5(¢):
e Strategy set {1,...,n}, with n > 2.
=> Nonatomic population state z in X := {z € R, | >iL, z; = 1}.

» x,(t) is portion of the population following strategy i at time ¢.
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The following are the main tenets determining 5(¢):

e Strategy set {1,...,n}, with n > 2.

=> Nonatomic population state z in X := {z € R, | >iL, z; = 1}.
> i(t) is portion of the population following strategy i at time ¢.

> Effect of 2 quantified as
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The following are the main tenets determining 5(¢):

e Strategy set {1,...,n}, with n > 2.

=> Nonatomic population state z in X := {z € R, | >iL, z; = 1}.
> i(t) is portion of the population following strategy i at time ¢.

> Effect of 2 quantified as
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Transmission Rate Model

Strategy Examples
1 2. = 3 @ B> B > Bs
e — R 4
- a

The following are the main tenets determining 5(¢):

= Strategy set {1,...,n}, with n > 2.
=> Nonatomic population state z in X := {z € R, | >iL, z; = 1}.

» x,(t) is portion of the population following strategy i at time ¢.

=> Effect of = quantified as
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The following is the payoff structure:
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Payoff Structure

The following is the payoff structure:

©> Strategy set {1,...,n}, with n > 2.
= Payoff vector is p := r — ¢, where payoff for strategy ¢ is

Pelt) = Tet) — ¢,
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The following is the payoff structure:

©> Strategy set {1,...,n}, with n > 2.
= Payoff vector is p := r — ¢, where payoff for strategy ¢ is

Pelt) = Tet) — ¢,

» Strategy / intrinsic cost is c¢y.
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Payoff Structure

The following is the payoff structure:

©> Strategy set {1,...,n}, with n > 2.
= Payoff vector is p := r — ¢, where payoff for strategy ¢ is

Pelt) = Tet) — ¢,

» Strategy / intrinsic cost is c¢y.
» Reward for adopting £ is 74(t).
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Payoff Structure

Strateqy Examples

3
>, 7 y = pury
O 5>5>5

The following is the payoff structure:

©> Strategy set {1,...,n}, with n > 2.

= Payoff vector is p := r — ¢, where payoff for strategy ¢ is

Pelt) = Tet) — ¢,

» Strategy / intrinsic cost is c¢y.
» Reward for adopting £ is 74(t).
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Evolutionary dynamics model (EDM)

Population game approach:

» W. H. Sandholm, "Population
Games and Evolutionary
Dynamics,” MIT Press, 2010.

» W. H. Sandholm, "Population
Games and Deterministic
Evolutionary Dynamics,”
Handbook of Game Theory
(Young & Zamir), North Holland,
2015. William . Sandholm
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Evolutionary dynamics model (EDM)

Applications to control systems:

» N. Quijano, C. Ocampo-Martinez,
J. Barreiro-Gomez, G. Obando, A.
Pantoja, E. Mojica-Nava, " The
Role of Population Games and
Evolutionary Dynamics in
Distributed Control Systems,”
IEEE Control Systems Magazine,
Feb. 2017.

Martins

The Role of Population
Games and Evolutionary
Dynamics in Distributed
Gontrol Systems

THE ADVANTAGES OF
EVOLUTIONARY GAME THEQRY

HICANOR QULIAND, CARLOS OCAMPO-MARTINEZ,
JULIAN BARREIRO-GOMEZ. GERMAN OBANDD,
'ANDRES PANTOLA. and EDUARDO MOJICA-NAIA
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Evolutionary dynamics model (EDM)

i = Vi(x,p) : Zx] Za:lz ,p) , 1<i<n

switching rate towards i  switching rate out of ¢

Martins

CDC Workshop on Large Population Teams: C ol, Equilibria and Learning, Milan, Ital



Epidemic Mitigation Technical Framework Optimal Equilibrium G A Stabilizing Solution
000000000008000000

Evolutionary dynamics model (EDM)

& =Vi(m,p) = Y aTulw,p) — Y zTijlz,p) , 1<i<n
j=1 j=1

Vv
switching rate towards ¢  switching rate out of ¢

D 2(0)eX = z(t) € Xt >0 (X:={z € R | YL, z; = 1}).
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Evolutionary dynamics model (EDM)

& =Vi(m,p) = Y aTulw,p) — Y zTijlz,p) , 1<i<n
j=1 j=1

Vv
switching rate towards ¢  switching rate out of ¢

D 2(0)eX = z(t) € Xt >0 (X:={z € R | YL, z; = 1}).
2 Tij : X x R™ — Ry is Lipschitz continuous, ¢ and j in {1,...,n}.

» Learning rule (revision protocol), models strategic preferences.

» T:;(x(t),p(t)) is the rate an agent currently following strategy
1 switches to j.
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Evolutionary dynamics model (EDM)

& =Vi(m,p) = Y aTulw,p) — Y zTijlz,p) , 1<i<n
j=1 j=1

Vv
switching rate towards ¢  switching rate out of ¢

D 2(0)eX = z(t) € Xt >0 (X:={z € R | YL, z; = 1}).
2 Tij : X x R™ — Ry is Lipschitz continuous, ¢ and j in {1,...,n}.

» Learning rule (revision protocol), models strategic preferences.

» T:;(x(t),p(t)) is the rate an agent currently following strategy
1 switches to j.

&> Deterministic approximation for large populations.
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Evolutionary dynamics model (EDM)

& =Vi(m,p) = Y aTulw,p) — Y zTijlz,p) , 1<i<n
j=1 j=1

Vv
switching rate towards ¢  switching rate out of ¢

D 2(0)eX = z(t) € Xt >0 (X:={z € R | YL, z; = 1}).
2 Tij : X x R™ — Ry is Lipschitz continuous, ¢ and j in {1,...,n}.

» Learning rule (revision protocol), models strategic preferences.
» T:;(x(t),p(t)) is the rate an agent currently following strategy
1 switches to j.

&> Deterministic approximation for large populations.
> Generalization from evolutionary dynamics.
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = Y51 7 Tji(w,p) — 25—y 2:Tij(x,p), 1 <i<n |

(Assumption) The following §-passivity conditions hold:
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = Y51 7 Tji(w,p) — 25—y 2:Tij(x,p), 1 <i<n |

(Assumption) The following §-passivity conditions hold:

=> There is continuous P : X x R™ — R>( and continuously
differentiable & : X x R™ — R>( such that:

VoS(z,p)V(z,p) < —P(z,p).
VpS(LE,p) = V(I7p)
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = Y51 7 Tji(w,p) — 25—y 2:Tij(x,p), 1 <i<n |

(Assumption) The following §-passivity conditions hold:

=> There is continuous P : X x R™ — R>( and continuously
differentiable & : X x R™ — R>( such that:

VoS(z,p)V(z,p) < —P(z,p).
VpS(LE,p) = V(I7p)

Along trajectories, we get

#S@(),p() < —P(x(t), p(t)) + (1) P(t).-
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = Y51 7 Tji(w,p) — 25—y 2:Tij(x,p), 1 <i<n |

(Assumption) The following §-passivity conditions hold:

=> There is continuous P : X x R™ — R>( and continuously
differentiable & : X x R™ — R>( such that:

VoS(z,p)V(z,p) < —P(z,p).
VpS(LE,p) = V(I7p)

Along trajectories, we get
GS(@(@),p(1)) < =P(x(t), p(t)) + &) P(L).

= S((L‘,p) =0& 77(33710) =0& (xlp = maXlSiSnpi) ~ V(.’)L‘7p) =0.
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = Y51 7 Tji(w,p) — 25—y 2:Tij(x,p), 1 <i<n |

(Assumption) The following §-passivity conditions hold:

=> There is continuous P : X x R™ — R>( and continuously
differentiable & : X x R™ — R>( such that:

VoS(z,p)V(z,p) < —P(z,p).
VpS(LE,p) = V(I7p)

Along trajectories, we get
GS(@(@),p(1)) < =P(x(t), p(t)) + &) P(L).

= S((L‘,p) =0& 77(33710) =0& (xlp = maXlSiSnpi) ~ V(.’)L‘7p) =0.
= (non standard) P(z,ap) > P(x,p), a>1, z € X, p e R™
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Evolutionary dynamics model (EDM)

31 = Vi(2,p) = g % Tjilw, p) = Yoy 2Ty (@,p), 1<i<n |

(6-passivity example) Impartial Pairwise Comparison Rule Class.

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, Italy, 2024.



Technical Framework
000000000000080000

Evolutionary dynamics model (EDM)

31 = Vi(2,p) = g % Tjilw, p) = Yoy 2Ty (@,p), 1<i<n |

(6-passivity example) Impartial Pairwise Comparison Rule Class.

> There are continuous nondecreasing ¢; such that

> Tij(x,p) = ¢i(p; = pi).
» ¢;(r) > 0if 7 >0 and ¢;(7) = 0 otherwise.
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = 35y 2 Tji(w,p) — 25—y 2 Tij(w,p), 1 <i<n )

(6-passivity example) Impartial Pairwise Comparison Rule Class.

> There are continuous nondecreasing ¢; such that

> Tij(z,p) = ¢;(p; — pi)-
» ¢;(r) > 0if 7 >0 and ¢;(7) = 0 otherwise.

= (Smith'84) used 73”‘“"(95,]9) = [p; — pil+-

> SSmith(gp) = %szzl xi[pj — pz]i
> PSmlth (l,7p) — % ZZj:l ViSmlth(xvp) [p — pl]%r
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = 35y 2 Tji(w,p) — 25—y 2 Tij(w,p), 1 <i<n )

(0-passivity example) Separable Excess Payoff Target Class.
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = 35y 2 Tji(w,p) — 25—y 2 Tij(w,p), 1 <i<n )

(0-passivity example) Separable Excess Payoff Target Class.
> There are continuous nondecreasing ¢; such that

> T.i(z,p) = ¢;(p;), with excess payoff p; :=p; — a'p.
» ¢;(r) > 0if 7 >0 and ¢;(7) = 0 otherwise.
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Evolutionary dynamics model (EDM)

& = Vi(z,p) = 35y 2 Tji(w,p) — 25—y 2 Tij(w,p), 1 <i<n )

(0-passivity example) Separable Excess Payoff Target Class.
> There are continuous nondecreasing ¢; such that

> T.i(z,p) = ¢;(p;), with excess payoff p; :=p; — a'p.
» ¢;(r) > 0if 7 >0 and ¢;(7) = 0 otherwise.

= (Brown & Von Neumann'50) used 7:2""(z, p) = [p;]+.

> S (x,p) = 5 37 B3
> PHN(z,p) = 5 X5 ma PV (@, D) B+
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Key References For §-passivity

= M. J. Fox and J. S. Shamma, " Population games, stable games, and
passivity,” Games, 2013.

= S. Park, N. C. Martins and J. S. Shamma,” From Population Games to
Payoff Dynamics Models: A Passivity-Based Approach”, IEEE CDC,
2019. (tutorial paper)

=> M. Arcak and N. C. Martins, " Dissipativity tools for convergence to Nash
equilibria in population games,” IEEE TCNS, 2020.

=> S. Kara and N. C. Martins,” Pairwise Comparison Evolutionary Dynamics
with Strategy-Dependent Revision Rates: Stability and J-Passivity,” IEEE
TCNS, 2020.

=> See also the following article drastically expanding the class of j-passive
rules to include the so-called hybrid rules combining elements of
established classes and, for the first time, also best response behaviors:

» Certério, Chang, Martins, Nuzzo, Shoukry, " Passivity Tools for
Hybrid Learning Rules in Large Populations,” arXiv:2407.02083
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Other related passivity results (partial list)

> B. Gao and L. Pavel, " On Passivity, Reinforcement Learning, and
Higher Order Learning in Multiagent Finite Games,” IEEE TAC,
2020.

> M. A. Mabrok, " Passivity Analysis of Replicator Dynamics and Its
Variations,” IEEE TAC, 2021.

©> Nuno C. Martins, Jair Certdrio, Matthew S Hankins,
" Counterclockwise Dissipativity, Potential Games and Evolutionary
Nash Equilibrium Learning,” arXiv:2408.00647. (A lot to explore!)
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Ovearching Approach: ¢-passivity Based Design

This talk can be viewed as a case-study on the following
advantages of §-passivity for design:

= It is equilibrium independent (Hines, Arcak, Packard'11).

» The selection of a desirable (optimal) equilibrium can be
carried out separately from its stabilization.
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Ovearching Approach: ¢-passivity Based Design

This talk can be viewed as a case-study on the following
advantages of §-passivity for design:

= It is equilibrium independent (Hines, Arcak, Packard'11).

» The selection of a desirable (optimal) equilibrium can be
carried out separately from its stabilization.

= Allows for modular analysis and stability certification.

» Important for the universality of stabilization policies.
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Ovearching Approach: ¢-passivity Based Design

This talk can be viewed as a case-study on the following
advantages of §-passivity for design:

= It is equilibrium independent (Hines, Arcak, Packard'11).

» The selection of a desirable (optimal) equilibrium can be
carried out separately from its stabilization.

> Allows for modular analysis and stability certification.
» Important for the universality of stabilization policies.

> Storage functions can be constructed from individual
components’' Lyapunov functions (or modifications).
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Ovearching Approach: ¢-passivity Based Design

This talk can be viewed as a case-study on the following
advantages of §-passivity for design:

= It is equilibrium independent (Hines, Arcak, Packard'11).

» The selection of a desirable (optimal) equilibrium can be
carried out separately from its stabilization.

= Allows for modular analysis and stability certification.

» Important for the universality of stabilization policies.

> Storage functions can be constructed from individual
components’' Lyapunov functions (or modifications).

=> Storage functions of the individual components can be used to
construct a Lyapunoy function for the overall system.
» May lead to useful bounds.
» |s important for the theory of ODE approximation.
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Optimal Equilibrium

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learn



Epidemic Mitigation Technical Framework Optimal Equilibrium G A Stabilizing Solution

ceo

Assumptions On Transmission Rate Coupling

e a
Assumption
The strategies’ inherent costs decrease for higher transmission rates, and
we order the entries of 5 and ¢ as:

5¢<,§¢+1 andc; > ciy1, 1<i<n-—1.

We consider that ﬁl > o, i.e., a transmission rate less than or equal to o
would be unfeasible or too onerous.
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Epidemic Mitigatio Technical Framework Optimal Equilibrium G A Stabilizing Solution

ceo

LLELLS

Assumptions On Transmission Rate Coupling

r

Assumption

The strategies’ inherent costs decrease for higher transmission rates, and
we order the entries of 5 and ¢ as:

5¢<§¢+1 andc; > ciy1, 1<i<n-—1.

We consider that ﬁl > o, i.e., a transmission rate less than or equal to o
would be unfeasible or too onerous.

Assumption
The following must hold when n > 3:

Ci — Ci41 Ci+1 — Ci42
>

Bit1 —Bi  Bit2 — Bitr

, 1<i<n—2.
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Optimal endemic transmission rate

We will use ¢ defined below to specify cost constraints because for a planner
seeking to promote the i-th strategy it suffices to offer incentives to offset the
differential ¢;.

Cii=ci—cCp, 1<i1<n.
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Epidemic Mitigation Technical Framework Optimal Equilibrium G A Stabilizing Solution

ooe

Optimal endemic transmission rate

We will use ¢ defined below to specify cost constraints because for a planner
seeking to promote the i-th strategy it suffices to offer incentives to offset the
differential ¢;.

Ci = C; — Cp, 1§i§n.‘

Definition
Given a cost budget ¢* in (0,¢1) with ¢ ¢ Ui 1{¢;}, we determine the
optimal endemic transmission rate 3™ as:

B* := min {g'z | o<, veX}.
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Epidemic Mitigation Technical Framework Optimal Equilibrium >G A Stabilizing Solution
coe

Optimal endemic transmission rate

e a
Definition
Given a cost budget ¢* in (0,¢1) with ¢ ¢ Ui {¢;}, we determine the
optimal endemic transmission rate 3 as:

B* := min {glz | o<, veX}.

Proposition
It follows from KKT that the unique solution is

z* ;= arg min {B/x | &z <c*, v eX}.

With ¢;++1 < c* < ¢, it results that 27::* = (C* = 5i*+1)/(51‘* = 5i*+1),
xj«y1 = 1 —xj« and the other entries of =™ are zero.
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ooe

Optimal endemic transmission rate

Definition
Given a cost budget c¢* in (0,¢1) with ¢* ¢ U{_,{¢}, we determine the
optimal endemic transmission rate 3 as:

B* := min {g/x | dz <, zeX}.

Definition
From B = B*, the optimal SIR endemic equilibrium (I* is minimized) is

I"'=ql-%), RF=0-n1-5), n:=3%
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Epidemic Population Game

Definition (EPG)

Below, we specify an epidemic population game (EPG):
It = (B®)(L ~ I(t) — R() — 0)I(0),
R(t) = v1(H) — wR(),
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Epidemic Population Game

Definition (EPG)
Below, we specify an epidemic population game (EPG):

Ity = (Bt)(1 — I(t) — R)) — o)1),
R(t) = vI(t) — wR(®),

q(t) = G(I(t), R(t), (1), q(1)),

r(t) = H(I(t), R(t), z(t), q(0)),

with q(t) in R™ for some m.
- J
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Epidemic Population Game

Only Know is §-passive

L ( &; = Vi(z,p) }

B={(x
Yy Yy *:
' |i=G(U, R,z,q), [=B(1-I-R)-o)| !
v |\r=H{,R,x,q) (I, R) R=9I -wR !
 We wish to design Normalized SIRS model \
\ )

Epidemic Population Game (EPG)
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Stabilization: Problem Formulation

( 1
Definition (EPG)

Below, we specify an epidemic population game (EPG):

I(t) = (B(t)(1 - I(t) — R(t)) — 0)I(2),

R(t) = vI(t) — wR(t),

q(t) = GI(t), R(t), =(t), q(t)),

r(t) = H(I(t), R(t),z(t), q(t)),
_ J
( )

Problem Statement

Design G and H such that (I*, R*,z*,q"), with ¢* := 0, is the unique
globally asymptotically stable equilibrium point for any

(1(0), R(0),z(0), ¢(0)) in (0,1] x [0,1] x X x R™.
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Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique
globally asymptotically stable equilibrium point.
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Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique
globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).
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A Stabilizing Solution Thanks

Optimal Equilibrium

Epidemic Mitigation Technical Framework

Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique

globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).

=> We will require showing the existence of a global Lyapunov function for

the overal system with state (I(t), R(t), z(t), q(t))
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Optimal Equilibrium A Stabilizing Solution Thanks

Epidemic Mitigation Technical Framework

Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique

globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).

=> We will require showing the existence of a global Lyapunov function for

the overal system with state (I(t), R(t), z(t), q(t)).

=> Why is this important ?
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Epidemic Mitigation Technical Framework

Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique

globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).

=> We will require showing the existence of a global Lyapunov function for

the overal system with state (I(t), R(t), z(t), q(t)).

=> Why is this important ?

» Guarantee that small deviations from the desired equilibrium
will not cause I to spike out of control.

Martins
CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, ltaly,




Optimal Equilibrium A Stabilizing Solution Thanks

Epidemic Mitigation Technical Framework

Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique
globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).

=> We will require showing the existence of a global Lyapunov function for

the overal system with state (I(t), R(t), z(t), q(t)).

» Guarantee that small deviations from the desired equilibrium
will not cause I to spike out of control.

» Not mentioned in our papers: Is important for guaranteeing
that the equilibrium concentrates the stationary distribution of
XN, for large but finite N (see Benaim & Weibull'03).
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Epidemic Mitigation Technical Framework Optimal Equilibrium A Stabilizing Solution

Stabilization: Problem Formulation

Problem Statement
Design G and H such that (I*, R*,x*,q"), with ¢* := 0, is the unique
globally asymptotically stable equilibrium point.

=> Designing G and H should not rely on exact knowledge of (EDM).

=> We will require showing the existence of a global Lyapunov function for

the overal system with state (I(t), R(t), z(t), q(t)).
= Why is this important ?

» Guarantee that small deviations from the desired equilibrium
will not cause I to spike out of control.

» Not mentioned in our papers: Is important for guaranteeing
that the equilibrium concentrates the stationary distribution of
XN, for large but finite N (see Benaim & Weibull'03).

» Can use the Lyapunov function to obtain bounds for I.
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A Stabilizing Solution
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LLELLS

A Solution For Any §-passive (EDM)

Definition (Reference epidemic variables)

(o2

i(t) == n(l - m), R(t) = (1— n)(1 - %)
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LLELLS

A Solution For Any §-passive (EDM)

Definition (Reference epidemic variables)

(o2

i(t) == n(l - m), R(t) = (1— n)(1 - %)

The following is a solution (note: omit (t) for simplicity):

G¢=G(,R,x,q):= (I —I)+n(nl—Inl)+v*(3* - B)
+E(R-R)(1-n—R),
r=HI,R,z,q) :==¢B+7", p=r—c
where ¢ € R. Here v > 0 and p* > 0 are design parameters, and

i _{&—p* if 27 =0

;=4 o, 1<i<n.
Ci otherwise

Martins
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A Solution For Any d-passive (EDM)

The following is an approximation (note: omit (¢) for simplicity):

¢=G(,R,z,q) = n(inl—Inl)+0*(8" = B),

T:H(Iavavq)::qg+r*7 p=r—c
where ¢ € R. Here v > 0 and p* > 0 are design parameters, and

N _{@—p* ifz; =0

;o= q o, 1< <n.
G otherwise
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A Solution For Any d-passive (EDM)

The following is an approximation (note: omit (¢) for simplicity):

¢=G(,R,z,q) = n(inl—Inl)+0*(8" = B),

r=H(I,R,z,q) =qB+r*, p=r—c

where ¢ € R. Here v > 0 and p* > 0 are design parameters, and

G ot ifar =0
rp={ 0T TR ET i cicn,
G otherwise
At the desired equilibrium (¢* = 0):
* _~7’L —p* f : =0 .
p; = ? poone o, 1<i<n.
—Cn otherwise
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Main Theorem

¢=G(,R,z,q) := (ffI)Jrn(lnIflnIA) +fu2(ﬁ* —B)
+5R-R)(1-n-R),

5
r=H(I,R,x,q) ::q5+r*, p=r—c¢

* ~’i7* if ::0 0
ri:—{c e 1<i<n.

~ . 7
&5 otherwise

Theorem
For any é-passive (EDM), the following holds for G and H (universally):

= (I*, R*,z*,0) is the unique equilibrium (assuming I*(0) > 0).
©> The equilibrium is globally asymptotically stable, with 1(0) > 0.

» A global Lyapunov function exists.
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Stabilization Policy in Action (n = 2)

We consider the learning rule

s = 0.806

1.1
and parameters for COVID-19: 0879 500 1000 1500 2000 2500
_— time (days)
» o = 0.1 (infectiousness period ~ o i 10/1°
10 days), v = o, and 125
w = 0.005 (immunity period ~ e — = L ‘
200 days) 0 250 500 750 1000
> 3, =0.15, B> = 0.19, while the 025f
B
cost vector is ¢; = 0.2, c2 = 0. ok
We select ¢* = 0.1, which gives ool
6* — O 17 :L‘T — :L‘; — O 5 and 0 500 1000 1500 2000 2500
(I*, R*) =~ (1.96%, 39.22%). oy T R T
» :1;1(0) :A 1, (I(O),R(O)) — :1(1: v = 0.806
(I 0)’ R(O ) = (160%7 3175%)’ . 0 500 1000 1500 2000 2500
and B(O) =0.15. time (days)
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How did we obtain G 777 (A preview)
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How did we obtain G 777 (A preview)

©> Postulate a candidate Lyapunov function with the following
structure:

LX) :=S(x,p)+ S (I,R,B), # €Y,
Y =Z,R,x,q), B:= g/x,

where S is the storage function of the (EDM) and .¥ is a
modification of the Lyapunov function for the SIRS model to
account for time-variant B.
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How did we obtain G 777 (A preview)

©> Postulate a candidate Lyapunov function with the following
structure:

LX) :=S(x,p)+ S (I,R,B), # €Y,
Y =Z,R,x,q), B:= gz,
where S is the storage function of the (EDM) and .¥ is a

modification of the Lyapunov function for the SIRS model to
account for time-variant B.

=> When computing the derivative of £(#/(t)) along trajectories
and using d-passivity, the choice of ¢ becomes clear.

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, Italy, 2024.



Epidemic Mitigation Technical Framewor Optimal Equilibrium G A Stabilizing Solution

0000080000

How did we obtain G 777 (A preview)

©> Postulate a candidate Lyapunov function with the following
structure:

LX) :=S(x,p)+ S (I,R,B), # €Y,
Y =Z,R,x,q), B:= g/az,

where S is the storage function of the (EDM) and .¥ is a
modification of the Lyapunov function for the SIRS model to
account for time-variant B.

=> When computing the derivative of £(#/(t)) along trajectories
and using d-passivity, the choice of ¢ becomes clear.

=> Best response map is used to show that £(%¥) is zero iff % is
the desired equilibrium (Z*, R*, z*,0).

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, ltaly, 2024.



A Stabilizing Solution
0000008000

Outlining the details

From J-passivity, the storage function satisfies
LS (t), p(t)) < ~P(@(t), p(t)) + H(t)'(0)
= —P(z(t),p(t)) + (4(t)B) i (t)

= —P(x(t),p(t)) + 4(t)B(?).

Martins

CDC Workshop on Large Population Teams: Control, Equilibria and Learning, Milan, Italy, 2024.



A Stabilizing Solution
0000008000

Outlining the details

From J-passivity, the storage function satisfies

LS (x(t), p(t)) < —P(a(t), p(t)) + pt)&(t)
—P(x(t), p(t)) + (4(t)B) (1)

= —P(x(t),p(t)) + 4(t)B(?).

Finally, when taking derivatives of .% along trajectories we get

4 2(Z(t),R(t), B(t)) = —L(t)* — 2R(t)* — G(")B(1),

G():=0s7(").

@
P
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Outlining the details

From J-passivity, the storage function satisfies

LS (x(t), p(t)) < —P(a(t), p(t)) + pt)&(t)
—P(x(t), p(t)) + (4(t)B) (1)

= —P(x(t),p(t)) + 4(t)B(?).

Finally, when taking derivatives of .% along trajectories we get
FL (T, R(1),B(1)) = ~I(t)" - LR(®)* - G()B(),
G() :=0sS(").

Choose ¢ = G(+). The derivative of £L(%) := S(z,p) + -#(Z, R, B) along
trajectories is

#S(@(),p(t)) + £ (Z(), R(8), B(1)) < —P(a(t), p(t)) = Z(1)* — 2R(1)*.
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A Stablllzmg Solution

Details about . (modified Lyap. func. for SIRS model)

S (Z,R,B) =
Where we define:
B()I(t),
B

W),
I(t) - I(),

1@):
1(t):=

1(t)

Recall also that:

Martins

~ 7 ~
IHT—I‘F

£RE+ 5 (B B2
R(t) := Bt)R(t),
R(t) == B)R(),
R(t) == R(t) — R(t),
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Details about . (modified Lyap. func. for SIRS model)

F(LTRB) =T T+ LR+ % (B~ )2
Important properties of .
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Details about . (modified Lyap. func. for SIRS model)
F(LTRB) =T T+ LR+ % (B~ )2

Important properties of .

= Y is convex.
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Details about . (modified Lyap. func. for SIRS model)

F(LTRB) =T T+ LR+ % (B~ )2
Important properties of .

> & is convex.
> % is nonnegative and Z(Z,R,B) =0 iff (Z,R,B) = (Z*,R*, B*).
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Details about . (modified Lyap. func. for SIRS model)

F(LTRB) =T T+ LR+ % (B~ )2
Important properties of .
> & is convex.
> % is nonnegative and Z(Z,R,B) =0 iff (Z,R,B) = (Z*,R*, B*).

=> Convenient to obtain upper-bounds (see our papers).
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Important properties of .

> & is convex.

> % is nonnegative and Z(Z,R,B) =0 iff (Z,R,B) = (Z*,R*, B*).

=> Convenient to obtain upper-bounds (see our papers).
Now recall that

LX) :=S(x,p)+S(I,R,B), # €Y,
% .=(Z,R,x,q), B:= g/x,
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Details about . (modified Lyap. func. for SIRS model)

F(LTRB) =T T+ LR+ % (B~ )2

Important properties of .

> & is convex.

> % is nonnegative and Z(Z,R,B) =0 iff (Z,R,B) = (Z*,R*, B*).

=> Convenient to obtain upper-bounds (see our papers).
Now recall that

LX) :=S(x,p)+S(I,R,B), # €Y,
% .=(Z,R,x,q), B:= g/x,

When S(z(0), p(0)) = 0, we obtain the useful inequality

S(Z@), R(1), B(t)) < L(Z (1) < L(Z(0)) = F(Z(0), R(0), B(0)).
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Using the Upper Bound to Select v: An Example

1.1
1.0
=> Initial condition is equilibrium for 09

v = 0.806 /1

v =0.316

a budget Of C* = 02 0.8 0 500 1000 1500 2000 2500
H - time (days)
©> New budget is relaxed to B ”
¢ =0.1. 125
1.00
= Bound for I/I* 0 250 500 750 1000
. . ime (days
> is a function of v. e ()
» is universal, i.e., valid for 5 16 =0
. = —B*=0.17
any d-passive (EDM). 5 —3* =016
N 14
» computed efficiently as a 2
. 3 13
quasi-convex program. s
5 L
= Goal of I/I* < 1.34 gives g 1
v < 0.806 000 025 050 005 L0
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Future Directions and Thanks

The following are worthwhile future directions:
©> Explore applications to other coupled dynamics.
> Are our bounds tight? If so, obtain better ones.
=> Consider multiple populations (see Certorio et. all. CDC'23).
=> Generalize beyond §-passive (EDM).

Thanks to our sources of support:
AFOSR FA95502310467,

NSF ECCS 2139713.
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