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1. Introduction



Many Agent Systems

Flocking

Traffic flow

oo

Collective Al

with many strategic agents

= Game theory (here: dynamic & stochastic games) & Mean field approximation
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Mean Field Models

v

Fully non-cooperative: Nash equilibrium
» Mean Field Games (MFGs) [Lasry and Lions, 2007] [Huang et al., 2006]

v

Fully cooperative: social optimum

»> Mean Field Control (MFC) [Bensoussan et al., 2013]

» Optimal control of McKean-Vlasov (MKV) dynamics
[Carmona and Delarue, 2018]

» Mean Field Markov Decision Processes (MFMDPs)
[Motte and Pham, 2022], [Carmona et al., 2023]

v

See [Bensoussan et al., 2013], [Gomes and Saude, 2014],
[Carmona and Delarue, 2018]

» Non-cooperative game between large (cooperative) coalitions/teams
»> Mean Field Type Games (MFTGs) [Tembine, 2014]
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Intuition for MFTGs

Several large coalitions:




Intuition for MFTGs

Several central players, each of “mean field type”:

[ ]
ﬂ Player 2

Player 1 )
|| [ ] Player 4

Player 3
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Intuition for MFTGs

v

Finite number of “coalitions” (populations, groups)

v

Each coalition has a large number of agents who cooperate (common objective)

v

Agents of different coalitions are not cooperating

v

Given the behavior of other coalitions, the agent of a given coalition are solving a
social optimum problem

> Between coalitions: Nash equilibrium
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Intuition for MFTGs

» Finite number of “coalitions” (populations, groups)
» Each coalition has a large number of agents who cooperate (common objective)
» Agents of different coalitions are not cooperating

» Given the behavior of other coalitions, the agent of a given coalition are solving a
social optimum problem

> Between coalitions: Nash equilibrium
» Other related concepts:
» Multi-population MFGs, e.g. [Cirant, 2015], [Bensoussan et al., 2018]

»> Graphon games, e.g. [Parise and Ozdaglar, 2019], [Caines and Huang, 2019]
> Mean field control games, e.g. [Angiuli et al., 2023] (infinite number of coalitions)
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Some References on MFTGs

» Surveys and books: [Djehiche et al., 2017], [Tembine, 2017],
[Barreiro-Gomez and Tembine, 2021]

> Applications: blockchain token economics [Barreiro-Gomez and Tembine, 2019],
risk-sensitive control [Tembine, 2015] or more broadly in
engineering [Barreiro-Gomez and Tembine, 2021]

» “Mean field games among teams” [Subramanian et al., 2023]

> “Team-against-team mean field problems” [Sanjari et al., 2023],
[Yiksel and Bagar, 2024]

» Special case: zero-sum MFTG [Cosso and Pham, 2019],
[Carmona et al., 2020], [Basar and Moon, 2021], [Guan et al., 2024]

» RL for zero-sum LQ MFTGs [Carmona et al., 2020], [uz Zaman et al., 2024],
[Zaman et al., 2024]: policy-gradient using the linear form of the optimal control

» Missing: RL methods for general MFTGs
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Our Contributions

v

Discrete-time, finite-state MFTGs as approximation of finite-player games

» Nash Q-Learning algorithm after quantization of simplex

v

Deep RL algorithm based on DDPG

v

Numerical experiments
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Outline

2. Mean Field Type Games



Finite-Agent Model: Dynamics

» Game between m groups of many agents; each group: “coalition”
» In other words: m central players
» N, denote the number of individual agents in coalition 4
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Finite-Agent Model: Dynamics

vVvyVvYVYyVvyy

Game between m groups of many agents; each group: “coalition”

In other words: m central players

N; denote the number of individual agents in coalition ¢

A(S?) and A(AY) be the sets of probability distributions on S* and A’
Agent j in coalition i has a state =% at time ¢

The state of coalition i is characterized by the empirical distribution

2

6mij S A(Sl)

1

Mz‘,z\’/ _ i
t N,

J

The state of the whole population is characterized by the joint empirical

distribution: p¥ = (™, ..., um™)
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Finite-Agent Model: Dynamics

vVvyVvYVYyVvyy

Game between m groups of many agents; each group: “coalition”

In other words: m central players

N; denote the number of individual agents in coalition ¢

A(S?) and A(AY) be the sets of probability distributions on S* and A’
Agent j in coalition i has a state =% at time ¢

The state of coalition i is characterized by the empirical distribution

2

6mij S A(Sl)

1

Mz‘,z\’/ _ i
t N,

J

The state of the whole population is characterized by the joint empirical
distribution: p¥ = (uN, ..., u™)
The state of every agent j € [IV;] in coalition ¢ evolves according to a transition
kernel p’ : 5% x A* x [[0_, A(S") = A(SY)
If the agent takes action « and the distribution is ul, then:

i ~ 0l o )
and the agent obtains a reward i/ = 7 (27 i 1N
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Finite-Agent Model: Rewards

> All the agents in coalition i independently pick their actions according to a
common policy 7 : 5% x A(S') x -+ x A(S™) = A(AY), i.e., a forall j € [N;]
are i.i.d. with distribution 7' (-]}, u¥)

> We denote by IT¢ the set of such policies
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Finite-Agent Model: Rewards

> All the agents in coalition i independently pick their actions according to a
common policy 7 : S* x A(Sl) -x A(S™) = A(AY), i.e., a) forall j € [N;]
are i.i.d. with distribution (-2, uV)

> We denote by IT¢ the set of such policies

» The social reward for the central player of population 7 is defined as:

TN = ZE[Z# ”],

t>0

where ~ € [0, 1) is a discount factor and i = ri(z? a7, ui )
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Finite-Agent Model: Rewards

> All the agents in coalition i independently pick their actions according to a
common policy 7* : S* x A(Sl) -x A(S™) = A(AY), i.e., a) forall j € [N;]
are i.i.d. with distribution 7’ (-], i} )

> We denote by IT¢ the set of such policies

» The social reward for the central player of population 7 is defined as:
i, N 1 t_ij
TN (L am NZE[EV ]
t>0

where ~ € [0, 1) is a discount factor and i = ri(z? a7, ui )

Definition
A policy profile («},...,x") € IT' x --- x II"™" is a Nash equilibrium for the above
finite-population game if: for all ¢ € [m], for all 7* € II",

Ji’N(ﬂi;Tr* ) < JZN(ﬂ'*,ﬂ'* 9,

where 7 ¢ denotes the vector of policies for central players in other coalitions except i.
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MFTG: Mean Field

We let N; — 40
> State of coalition i: N — ui € A(S") for each i € [m]
> State of the whole population: Y — py = (!, ..., u7") € A(SY) x - x A(S™)

> We will refer to the limiting distributions as the mean-field distributions
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MFTG: Mean Field

We let N; — 40
> State of coalition i: N — ui € A(S") for each i € [m]
> State of the whole population: Y — py = (!, ..., u7") € A(SY) x - x A(S™)

> We will refer to the limiting distributions as the mean-field distributions

v

More rigorously: Propagation of chaos

v

We expect all the agents’ states to evolve independently, interacting only through
the mean-field distributions
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MFTG: Mean Field

We let N; — 400

>

>

>

State of coalition i: i — pi € A(S") for each i € [m]

State of the whole population: Y — ps = (!, ..., u7") € A(S) x -+ x A(S™)
We will refer to the limiting distributions as the mean-field distributions

More rigorously: Propagation of chaos

We expect all the agents’ states to evolve independently, interacting only through
the mean-field distributions

A representative agent in mean-field coalition i has a state =i € S* which evolves
according to: x} .y ~ p*(-|zt, at, pe), ay ~ @' (-|x}, e ), where o € II* is the policy
for coalition ¢

We consider that this policy is chosen by a central player and then applied by
all the infinitesimal agents in coalition 1.
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MFTG: Rewards

> The total reward for coalition i is: J*(*,...,7™) = [Z»OV r (J:t,at,,ut)}

» Goal: find a Nash equilibrium between the m central players.

Definition

A policy profile (zl,..., 7)) € H1 -+ x IT"™ is a Nash equilibrium for the above
MFTG if: for all i € [m], for all 7" € 1'[2, Ji (bt < JH(wl;wt), where ¢ denotes
the vector of policies for players in other coalitions except .

Mean-field
type game

)
==

‘ N-player game

Approximate
Nash equilibrium
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Approximate Equilibrium

Assumption
(a) Foreachi c [m], the reward function r*(x, a, j1) is bounded by a constant C,. > 0
and Lipschitz w.r.t. i with constant L.
(b) The transition probability p(z'|z, a, 11) is Ly-Lipschitz continuous in

(c) The policies w(a|z, p) satisfy the following Lipschitz bound: '
(|, ) = m(|z, @)1 < Lxd(p, i) for every x € S*, and p, ji € A(S").
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Approximate Equilibrium

Assumption
(@) Foreachi € [m), the reward function r*(x, a, 1) is bounded by a constant C,. > 0
and Lipschitz w.r.t. i with constant L.
(b) The transition probability p(x’|z, a, u) is L,-Lipschitz continuous in p

(c) The policies w(a|z, 1) satisfy the following Lipschitz bound: '
(|, ) = m(|z, @)1 < Lxd(p, i) for every x € S*, and p, ji € A(S").

Theorem (Approximate Nash equilibrium)

Let(nl,..., ™) € II' x --- x II™ be a Nash equilibrium for the MFTG. When the
discount factor ~ satisfies yv(1 + L. + Lp) < 1, then

max Ji’N(fri;ﬂ;i) < Ji’N(Tri;ﬂ';i) +e(N),

e

for alli € [m], with £(N) = C max,cm) {|si\ N arNGe } where C is a constant.
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Approximate Equilibrium

Assumption
(@) Foreachi € [m), the reward function r*(x, a, 1) is bounded by a constant C,. > 0
and Lipschitz w.r.t. i with constant L.
(b) The transition probability p(x’|z, a, u) is L,-Lipschitz continuous in p

(c) The policies w(alz, 1) satisfy the following Lipschitz bound: '
(|, ) = m(|z, @)1 < Lxd(p, i) for every x € S*, and p, ji € A(S").

Theorem (Approximate Nash equilibrium)

Let(nl,..., ™) € II' x --- x II™ be a Nash equilibrium for the MFTG. When the
discount factor ~ satisfies yv(1 + L. + Lp) < 1, then

max Ji’N(fri;ﬂ;i) < Ji’N(Tri;ﬂ';i) +e(N),

s

for alli € [m], withe(N) = C max;c[m {|Si\w/|Ai\/\/Ni}, where C' is a constant.

» It justifies solving MFTGs because they provide an approximate solution for
finite-agent games.
» Provides a rate of convergence, not just asymptotic convergence
11/31




Reformulation with MFMDPs: Notations

» The expected one-step reward can be expressed as

;u'taﬂ—t Z /‘Lt Z ﬂ—f a|x) (IE,CL,,LLt), 7?2 = 7T,7§(|,,th)

reSt a€At
> 5§ =X §'isthe (mean-field) state space, where S* = A(S’) is the
(mean-field) state space of population i. The (mean-field) state is 5, = u; € S
> A" = A(A")5'] is the (mean-field) action space
> 7.8 x A" - R is as defined above
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Reformulation with MFMDPs: Notations

» The expected one-step reward can be expressed as

;u'taﬂ—t Z /’Jt Z ﬂ—f CL|1) (xvanut)y 7?2 :71-17;(‘7/ut)
€St a€At
> S= X:il St is the (mean-field) state space, where S* = A(S?) is the
(mean-field) state space of population i. The (mean-field) state is 5, = u; € S
> A" = A(A")5'] is the (mean-field) action space
> 7.5 x A" - R is as defined above
> F=p:5x A x-.. x A™ — Sis defined such that: p(s¢,at, ..., a;") = 5i41
where, if 5; = (pi, ..., p") and @i = 7 (|-, ui), then Seer = (i1, i)

» The transitions of the mean-field state depends on all the central players’
(mean-field) actions
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Reformulation with MFMDPs: Notations

» The expected one-step reward can be expressed as

;u'taﬂ—t Z /’Jt Z ﬂ—f all) (xvauut)y 7?2 :71-17;(‘7/ut)
€St a€At
> S= X:il St is the (mean-field) state space, where S* = A(S?) is the
(mean-field) state space of population i. The (mean-field) state is 5, = u; € S
> A" = A(A")5'] is the (mean-field) action space
> 7.5 x A" - R is as defined above
> F=p:5x A x-.. x A™ — Sis defined such that: p(s¢,at, ..., a;") = 5i41
where, if 5; = (pi, ..., p") and @i = 7 (|-, ui), then Seer = (i1, i)

» The transitions of the mean-field state depends on all the central players’
(mean-field) actions

» The i-th central player first chooses (mean-field) policy 7 : § — A’

> When applied on Mt,_ “(we) returns a policy for the individual agent, i.e.,
7 (ue) 0 S* 3wl T (e, k) = 7|k, ) € A(AY).
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Reformulation with MFMDPs: Notations

» The expected one-step reward can be expressed as

;u'taﬂ—t Z /‘Lt Z ﬂ—f a|x) (IE,CL,,LLt), 7?2 :7T,7§(|,,th)
€St a€At
> S= X:il St is the (mean-field) state space, where S* = A(S?) is the
(mean-field) state space of population i. The (mean-field) state is 5, = u; € S
> A" = A(A")5'] is the (mean-field) action space
> 7.5 x A" - R is as defined above
> F=p:5x A x-.. x A™ — Sis defined such that: p(s¢,at, ..., a;") = 5i41
where, if 5; = (pi, ..., p") and @i = 7 (|-, ui), then Seer = (i1, i)

» The transitions of the mean-field state depends on all the central players’
(mean-field) actions

> The i-th central player first chooses (mean-field) policy 7 : S — A°

> When applied on Mt,_ “(we) returns a policy for the individual agent, i.e.,
7 (ue) 0 S* 3wl T (e, k) = 7|k, ) € A(AY).

» This approach allows us to view the problem posed to the i-th central player as a
Mean Field MDP (MFMDP)
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Reformulation with MFMDPs

Given policy profile # = (7',...,7™), total reward of central player of coalition i:

53(5) = 75, 7) = Ba | ) 7' (51, ) 50 = 5]
t=0

where 5.1 ~ p(:|5¢,at,...,a"), @l ~7'(-|5:),5=1,...,m, t > 0.

Definition (Nash equilibrium for MFTG rephrased)

An MFTG Nash equilibrium 7. = (74,...,7") is such that for all i = 1,...,m:

7'(5,7.) > (5, (7', 7w Y)), V5 € S, vrt € IT".
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Reformulation with MFMDPs

Given policy profile # = (7',...,7™), total reward of central player of coalition i:

53(5) = 75, 7) = Ba | ) 7' (51, ) 50 = 5]
t=0

where 5.1 ~ p(:|5¢,at,...,a"), @l ~7'(-|5:),5=1,...,m, t > 0.

Definition (Nash equilibrium for MFTG rephrased)

An MFTG Nash equilibrium 7. = (74,...,7") is such that for all i = 1,...,m:

7'(5,7.) > (5, (7', 7w Y)), V5 € S, vrt € IT".

Leta = (a',...,a™), ® "(da”'[5) = [, 7/ (da’|5),a " € A~" =], A’.

Q-function for central player i: Q% (5,a) = Ex |>.,° 77 (5:,a")|50 = 5,a0 = a|.
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Reformulation with MFMDPs

Given policy profile # = (7',...,7™), total reward of central player of coalition i:

03(5) = 75, 7) = Bx | ) 1" (51,50 = 5
t=0

where 5.1 ~ p(:|5¢,at,...,a"), @l ~7'(-|5:),5=1,...,m, t > 0.

Definition (Nash equilibrium for MFTG rephrased)

An MFTG Nash equilibrium 7, = (ﬁi_, ...,m.")issuch thatforalli =1,...,m:
v'(5, ) > ' (5, (74, w2 1)), V5 € S, vt € TT".

Leta = (a',...,a™), ® "(da”'[5) = [, 7/ (da’|5),a " € A~" =], A’.
Q-function for central player i: Q% (5,a) = Ex Yo O’y 7 (5,a")|50 = 5,a0 = a|.

Definition

An MDP for a central player i against fixed policies 7 ~* of other players is a tuple
(S, A*, pr—i,T=—i,v) Where

ﬁ'fr*i(g/'gv a’l) = / ( |S CL) (da i|_)7 7_‘7?*@' (57 al) = Fi(§7 al)

A—1t
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Outline

3. Nash Q-Learning for MFTGs



Intuition

» Nash Q-learning for finite-player, finite-space games [Hu and Wellman, 2003]
» Depends on the policies of all the players

» Infinite horizon = the equilibrium depend on infinite trajectories

14/31



Intuition

v

Nash Q-learning for finite-player, finite-space games [Hu and Wellman, 2003]
Depends on the policies of all the players

Infinite horizon =- the equilibrium depend on infinite trajectories

Recall: Q%(3,a)

If we had DPP for Q°, we could use the MF Q-learning of [Carmona et al., 2023]

But no DPP for Q°, unless we have the equilibrium policies of others
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Intuition

v

Nash Q-learning for finite-player, finite-space games [Hu and Wellman, 2003]
Depends on the policies of all the players

Infinite horizon =- the equilibrium depend on infinite trajectories

Recall: Q%(3,a)

If we had DPP for Q°, we could use the MF Q-learning of [Carmona et al., 2023]
But no DPP for Q°, unless we have the equilibrium policies of others

Introduce an auxiliary Q-function (NashQ function) based on equilibrium policies

Reduce the infinite-horizon game to a sequence on one-stage games
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Stage Game

Definition (Stage game and stage Nash equilibrium)

Consider as given a (mean-field) state 5 € S and a policy profile & = (7*,...,7™).
The (mean-field) stage game induced by s and 7 is a static game in which player ¢
takes an action a’ € A*, i =1,..., m and gets the reward

Qi?(§7al’ s 7am)

Player i is allowed to use a mixed strategy o* € A(A?).
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Stage Game

Definition (Stage game and stage Nash equilibrium)

Consider as given a (mean-field) state 5 € S and a policy profile & = (7*,...,7™).
The (mean-field) stage game induced by s and 7 is a static game in which player ¢
takes an action a’ € A*, i =1,..., m and gets the reward

Q‘Zﬁ'(§7 ala °00g am)
Player i is allowed to use a mixed strategy o* € A(A?).

A Nash equilibrium for this stage game is a strategy profile 0. = (ol,...,0™) such
that, for all o* € A(A’),

ol QR(5) > ot ol ool o QL (5)
where we define

oG (8) = 7 (5,0) + 7 / / o (&, 7)p(d5'|5, @)o(dals),
SJA

with A = A" x --- x A™, o(dals) = [[[~, o’ (da’|5), and 7(5,0") = Egi. .7 (5, a’).
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Stage Game

Definition (NashQ function)

Given a Nash equilibrium (o3, ...,07), the NashQ function of player i is defined as:

NashQ%(5) =05 -+ 01" Qx(5).

Proposition (Link between MFTG equilibrium and stage-game equilibrium)

The following statements are equivalent:
(i) 7 = (71,...,7") is a Nash equilibrium for the MFTG with equilibrium payoff
(0%, ..., 02);
(i) Foreverysec S, (7(3),...,7™(5)) is a Nash equilibrium in the stage game
induced by state s and policy profile ..
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Stage Game

Definition (NashQ function)
Given a Nash equilibrium (o3, ...,07), the NashQ function of player i is defined as:

NashQ%(5) =05 -+ 01" Qx(5).

Proposition (Link between MFTG equilibrium and stage-game equilibrium)

The following statements are equivalent:
(i) 7 = (71,...,7") is a Nash equilibrium for the MFTG with equilibrium payoff
(0%, ..., 02);
(i) Foreverysec S, (7(3),...,7™(5)) is a Nash equilibrium in the stage game
induced by state s and policy profile ..

» Basis for RL algorithm: Nash Q-learning
» Requires solving stage-game
»> We are going to discretize the simplexes
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Simplex Discretization

> S'= A(S") and A(AY) are (finite-dimensional) simplexes; we endow them with
the distances ds(5,5') = Y2, (5" 8") = Yoy Dpesi (@) — 1" ()], and
d,i (@' (3),a"(5) = Y |7%(alz, 3) — 7'*(a|z, 3)|, where 5 =y,
a'(s) = m'(:|-3).

> In A" = {§ — A(A")}, we take d i (@', a"") = sup,cg dai (@' (5),a’ (5)).
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Simplex Discretization

> §i—

A(S?) and A(AY) are (finite-dimensional) simplexes; we endow them with

the distances ds(5,5") = 3., d(5', s'') = > iim) Yowesi (@) — 1 ()], and
dai(@'(5),a"(8)) = 3, , I7*(alz, 5) — «"*(alz, )|, where 5* = ',
a'(s) = m'(:|-3).

> In A" = {§ — A(A")}, we take d i (@', a"") = sup,cg dai (@' (5),a’ (5)).

> Quantization:

>

>
2

Fori=1,...,m,let §" c §" and A(A") C A(A?) be finite approximations
of S and A(AY).

Mean-field finite spaces S = 172, 5" ¢ S and A* = {a’ : § — A(A")}.

Let es = max;cg min, g dg(5,5) and

€4 = max; maxgi z: Ming: 4 d 5 (a’, a*), which characterize the fineness
of the discretization.

The policy space of each player i is IT' = {7’ : § — A(A")}.
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Simplex

Discretization

> §i—

A(S?) and A(AY) are (finite-dimensional) simplexes; we endow them with

the distances ds(5,5") = 3., d(5', s'') = > iim) Yowesi (@) — 1 ()], and
dai(@'(5),a"(8)) = 3, , I7*(alz, 5) — «"*(alz, )|, where 5* = ',
a'(s) = m'(:|-3).

> In A" = {§ — A(A")}, we take d i (@', a"") = sup,cg dai (@' (5),a’ (5)).

> Quantization:

>

>
2

2

Fori=1,...,m,let §" c §" and A(A") C A(A?) be finite approximations
of S and A(AY).

Mean-field finite spaces S = 172, 5" ¢ S and A* = {a’ : § — A(A")}.

Let es = max;cg min, g dg(5,5) and

€4 = max; maxgi z: Ming: 4 d 5 (a’, a*), which characterize the fineness
of the discretization.

The policy space of each player i is IT' = {7’ : § — A(A")}.

> Projection operator Projs : S — S, which maps 5 to the closest point in S.

» Transitions: Given a state 5, and a joint action (&, ..., &™), we generate

St4+1

= F(3,a;,...a"). Then, we project 5., back to S and denote the

projected state by 511 = Projg(5¢41).
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Theoretical Results

‘ Mean-field ‘ ‘ Discrete MF ‘ ‘ Nash ‘

‘ N-player game type game MFTG Q-Learning

Approximate Approximate Convergence of
Nash equilibrium Q-functions Q-functions
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Mean Field Nash Q-Learning

Algorithm 1: Discretized Nash Q-learning for MFTG (DNashQ-MFTG)

1: Inputs: A series of learning rates oy € (0,1), t > 0, and exploration levels ¢, t > 0
2: Outputs: Nash Q-functions Q}v fori=1,...,m

3: Initialization: Qf o(3,a',...,a™) =0 for all 3 € § and &' € A";

4: for k=0,1,...,N—-1do

5. Initialize state 3g
6: fort=0,...,7—1do
T Generate a random number ¢ ~ U[0,1]
8 if {; > ¢ then
9 Solve the stage game Qh(é,) and get strategy profile (#%,...,#™) fori =1,...
10: Sample @} ~ #o for i = 1awim
11: else
12: Sample action & uniformly from A’ fori=1,...,m
13: end if
14: Observe f,..., 1f", @},..., a", and 341 = Projg(F(3,,a},..., a"))
15: Solve the stage game Q}, ,(3,+1) and get strategy profile (FY L FE™) for
i=1,....,m
16: Compute NashQ}, ,(3141) = P QL ‘(§¢+1)
17: Copy QL,!H = Q;‘t fori=1,...,m and update Qk,l+l by:
Qo (Brat,...,a™) = (1 - ) QL (3, a", ..., &™) + au(rf + 5N85hQ'L,(§z+1))
18: for
19:  Copy Q}y10=Qhp_y fori=1...m
20: end for

sm

19/31



Convergence

Recall:
Qir(3,a',...,a™) = (1 —a)Qi(5,a",...,a™) + au(Fi + BNashQ; (5')),

where » _
NashQj(5') = 70" - 70" Qi (5),
with %27 obtained by solving the one-stage game with rewards (Q; (5'),..., Q" (3')).

Theorem (NashQ-learning convergence)

Under suitable assumpt/ons (see [Hu and Wellman, 2003, Yang et al., 2018]),
Qt = (Qt L, ) converges to the Nash equilibrium Q-functions

Qr. = Qv QR).
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Convergence

Recall:
Qir(3,a',...,a™) = (1 —a)Qi(5,a",...,a™) + au(Fi + BNashQ; (5')),

where » _
NashQj(5') = 70" - 70" Qi (5),
with %27 obtained by solving the one-stage game with rewards (Q; (5'),..., Q" (3')).

Theorem (NashQ-learning convergence)

Under suitable assumpt/ons (see [Hu and Wellman, 2003, Yang et al., 2018]),
Qt = (Qt L, ) converges to the Nash equilibrium Q-functions

Qr. = Qv QR).

Then: focus on the difference between the approximated Nash Q-function,
Qt(PrOJS( ) ProjAl(al), ..., Proj s (a™)) and the true Nash Q-function,
L (3,a'...a™),in the infinite space S x A* x --- x A™
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Approximation Analysis

Assumption
(@) Foreachi, 7 is bounded and Lipschitz continuous w.r.t. (5;,at) with constant
L. F is Lipschitz continuous w.r.t. (3,a*,...,a™) with constant Lz in
expectation.

(b) % is Lipschitz continuous w.r.t. 5 with constant L ..

Notation: Proj(5,a"...a™) = (Projs(5), Proj 11 (@'), ..., Proj 4m (@a™)).

Theorem (Discrete problem analysis)

Lete > 0. Suppose there is a unique pure policy 7% for the MFTG for each i and

5 € S, the function v_» (5) is a global optimal point for the stage game Q~»(5). Then, if
t is large enough, foreachi, 5 € S,i=1,2,---, we have

|Qi(Proj(s,a" ...a™)) — Qir(5,a"...a™)| < €,

where

/

€ =€(t) + Crea + Caes,

with e(t) — 0 ast — +oo, €s and ea defined above, respectively,
Ci = 1 (Lrl +’)/va LFm) and Cy = 7L172 + er + ’yLv@ LF-
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Nash Q-Learning

Pros and cons:
» Convergence proof under suitable assumptions

» But requires solving a stage-game at each iteration

v

Easy for games with finite and small spaces

» Hard for games with large or even continuous spaces

v

Quantization is not scalable
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4. DDPG-Based Method



Deep RL

Another idea:
» Do not discretize the simplexes

» Keep mean field state space as a continuous space

v

Use deep RL to learn a policy as a NN

v

Train one NN per central player (coalition)

v

Evaluate convergence using exploitability

v

For now, no proof of convergence
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MFTG DDPG

Algorithm 2: DDPG for MFTG
1: Inputs: A number of episodes N; a length T for each episode; a minibatch size Nypgpen; a
learning rate 7.

2: Outputs: Policy functions for each central player represented by x“;,‘.

3: Initialize parameters 6; and w; for critic networks Qj and actor networks =}, , i =1,...,m

4: Initialize 6 < 6; and w] + w; for target networks Q",: and ﬂ":,:, i=1,..m

5: Initialize replay buffer Rp,er

6: for k=0,1,...,.N —1do

7:  Initialize distribution 5¢

8 fort=0,1,....,T-1do

9: Select actions a; = , (3:) + €, where ¢, is the exploration noise, for i =1,...,m

10: Execute aj, observe reward (3, aj), for i = 1,...,m

11: Observe 8¢,

12: Store transition (S, @}, ..., @), 7y oy 74" 5¢41) in Riufer

13: Sample a random minibatch of Ny, transitions (§j,&;, ...,a;", f;, .A.,F;", §j41) from
Rbuﬂ'e_r . » =

14: Set y; = 7"; 4 ‘7Q'9:(§j+1,1r‘u:(§jﬂ)) fori=1,...,m, j=1,..., Nbatch

15: Update the critic networks by minimizing the loss:

L0) = 5= X5 — Q),(35,a)))% fori =1,...,m
16: Update the actor policies using the sampled policy gradients Vo', for i = 1,...,m:

Vi) = gva-oa (55,75, (5)) Va8 55)

17: Update target networks: 8] « 76; + (1 — 7)8}, w} + Tw; + (1 = 7)(w}), fori =1,...,m.
18:  end for
19: end for
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5. Numerical Experiments



Experimental Setup

» Metrics:

> Testing rewards of each central player
> Exploitability

> Training and testing sets:

> Training set: randomly generated tuples of distributions
> Testing set: a finite number of tuples of distributions that are not in the
training set

v

Baseline:

» No baseline for our problems
» Independent Learning-Mean Field Type Game (IL-MFTG): ablation study
(hide the distribution of the other population)

v

Games: 5 examples in the paper

> Improvement: Average exploitability improvement of at least 30% in each game
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Exploitability

Definition
The exploitability of a policy profile (z!,...,7™) € II* x --- x 1™ is
E(rt,...,m™) = Z:il Ent, ..., ™),

where the i-th central player’s exploitability is:

', ..., m™) = max J' (74wt — J(at ).
il

> £i(xt,...,m™) = how much player i can be better off by deviating from =
> E(rt,...,m™) = 0iff (z',..., ™) is a Nash equilibrium for the MFTG
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Example 1: 1D Population Matching Grid Game

» There are m = 2 populations

» Agent’s state space: 3-state 1D grid world

» Actions: moving left, staying, and moving right, with individual noise perturbing

the movements.

» Rewards: encourage Coalition 1 to stay where it is initialized but also to consider
avoiding Coalition 2, and encourage Coalition 2 to match Coalition 1.

~2000
—4000

—6000
—8000 *— reward population 1

-10000;! —— reward population 2

Testing Reward

Exploitability

10000
8000
6000
4000
2000

—— DNashQ-MFTG

0 2000 4000 6000 8000 10000

Episode

G 2000 4000 6000 8000 10000
Episode

t=0

t=4

EEm Population 1
Population 2

EEm Population 1

Popu\ationzi

2
State

2 3
State

Ex. 1: Left and middle: averaged testing rewards and exploitabilities resp. (mean + standard
deviation). Right: one realization of population evolution at ¢ = 0 and 4 for one testing distribution.
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Example 2: Four-room with crowd aversion

» There are m = 2 populations
» Agent’s state space: 2D grid world composed of 4 connected rooms of size 5 x 5
» The policies’ inputs are thus of dimension 2 x 4 x 5 x 5 = 200

» Rewards: encourage the two populations to spread while avoiding each other;
Coalition 2 has a penalty for going to rooms other than the one she started in.

050 ¢ 005 0

P ta i asarcnitie]

LR
ot FTPRPT g

| —— DDPG-MFTG
—— Baseline

Testing reward
MR oo @
o8 838

00 30000 50000
Episode

IS
S

—— DDPG-MFTG
—— Baseline

Noow
s &

o
)

Exploitability

1000 30000 50000
Episode

Ex. 2: Left, top and bottom: averaged testing rewards and exploitabilities resp. (mean + stddev).
Right, two top rows: distribution evolution of the two populations with our method. Right two
bottom rows: distribution evolution with the baseline. Color bars indicate density values.
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Example 3: Predator-prey 2D with 4 groups

» There are m = 4 populations.
> Player’s state space is a 5 x 5-state 2D grid world with walls on the boundaries

» Rewards:Coalition 1 is a predator of Coalition 2, Coalition 2 avoids Coalition 1
and chases Coalition 3, which avoids Coalition 2 while chasing Coalition 4.
Coalition 4 tries to avoid Coalition 3. There is also a cost for moving.

0 10 0 [

1 e+ iom 9 [015
05 e 010

§a[ﬂo g’[ 2 S ég a0

01234 01234 01234 01234
o t=15 t=20
9 9 '\1 01 ? 3
: [05 H Eg tooso
—ooreMFTE 00 4 . 0.0 s
600 i) 01234 01234 01234
| Baseline & t=5 t=15
o = =
Zs00 ? b O Banet 9
Q + +
o | o.0s
) g 05 3 I H 0.050
S 3 4 0.00 4 0.025
2300 01234 01234 01234
w t=0 t=5 t=15
200 ? 1.0 ? Em ? '
100 2 05 2 ﬂ 01 : B8 }o.0s0
H 3 B i Bammm | 0025
0 0.0 0.0
0 20000 40000 . 60000 80000 01234 01234 01234
Episode t=0 t=5 t=15

Ex. 3: Left: averaged exploitabilities (mean =+ stddev). Right: populations evolution, one coalition
per row and one time per column: ¢ = 0, 5, 10, 15, 20. Color bars indicate density values.
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Exploitability Results

We summarize the improvement brought by our method compared with the
corresponding baseline, in each example.
The quantities are:

» Baseline Exploitability: The baseline’s mean value (as described in the paper).
> Our Exploitability: Our method’s mean value (as described in the paper).
> Improvement: The percentage improvement is calculated as:

Baseline — Ours

Improvement (percentage) = ~ Baseine x 100.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Baseline Exploit. | 2355.35 3.13 131.43 2.69 6.93
Our Exploit. 471.40 2.16 38.75 1.39 3.14
Improvement 79.98% | 31.0% | 70.52% | 48.3% | 54.69%

Comparison of baseline and our exploitability metrics across the 5 examples described in the
text, along with percentage improvement.
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6. Conclusion



Summary and Perspectives

Summary:
> Finite space MFTGs: Nash equilibrium between mean field coalitions
» Reformulation in terms of MFMDP
> Nash Q-learning after quantization of the simplexes
» Deep RL without discretization

Paper: https://arxiv.org/abs/2409.18152

Perspectives:
» Problem setting: more complex settings, information structure, . ..
> Numerical analysis: Proof of convergence for deep RL

» Numerical experiments: More complex examples and deep RL methods

v

Continuous space (beyond LQ)

Thank you!
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