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Many Agent Systems

with many strategic agents

→ Game theory (here: dynamic & stochastic games) & Mean field approximation
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Mean Field Models

↭ Fully non-cooperative: Nash equilibrium
↭ Mean Field Games (MFGs) [Lasry and Lions, 2007] [Huang et al., 2006]

↭ Fully cooperative: social optimum
↭ Mean Field Control (MFC) [Bensoussan et al., 2013]
↭ Optimal control of McKean-Vlasov (MKV) dynamics

[Carmona and Delarue, 2018]
↭ Mean Field Markov Decision Processes (MFMDPs)

[Motte and Pham, 2022], [Carmona et al., 2023]

↭ See [Bensoussan et al., 2013], [Gomes and Saúde, 2014],
[Carmona and Delarue, 2018]

↭ Non-cooperative game between large (cooperative) coalitions/teams
↭ Mean Field Type Games (MFTGs) [Tembine, 2014]
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Intuition for MFTGs

Several large coalitions:

Coalition 2

Coalition 1

Coalition 3

Coalition 4
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Intuition for MFTGs

Several central players, each of “mean field type”:

Player 2

Player 1

Player 3

Player 4
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Intuition for MFTGs

↭ Finite number of “coalitions” (populations, groups)

↭ Each coalition has a large number of agents who cooperate (common objective)

↭ Agents of different coalitions are not cooperating

↭ Given the behavior of other coalitions, the agent of a given coalition are solving a
social optimum problem

↭ Between coalitions: Nash equilibrium

↭ Other related concepts:
↭ Multi-population MFGs, e.g. [Cirant, 2015], [Bensoussan et al., 2018]
↭ Graphon games, e.g. [Parise and Ozdaglar, 2019], [Caines and Huang, 2019]
↭ Mean field control games, e.g. [Angiuli et al., 2023] (infinite number of coalitions)
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Some References on MFTGs

↭ Surveys and books: [Djehiche et al., 2017], [Tembine, 2017],
[Barreiro-Gomez and Tembine, 2021]

↭ Applications: blockchain token economics [Barreiro-Gomez and Tembine, 2019],
risk-sensitive control [Tembine, 2015] or more broadly in
engineering [Barreiro-Gomez and Tembine, 2021]

↭ “Mean field games among teams” [Subramanian et al., 2023]

↭ “Team-against-team mean field problems” [Sanjari et al., 2023],
[Yüksel and Başar, 2024]

↭ Special case: zero-sum MFTG [Cosso and Pham, 2019],
[Carmona et al., 2020], [Başar and Moon, 2021], [Guan et al., 2024]

↭ RL for zero-sum LQ MFTGs [Carmona et al., 2020], [uz Zaman et al., 2024],
[Zaman et al., 2024]: policy-gradient using the linear form of the optimal control

↭ Missing: RL methods for general MFTGs
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Our Contributions

↭ Discrete-time, finite-state MFTGs as approximation of finite-player games

↭ Nash Q-Learning algorithm after quantization of simplex

↭ Deep RL algorithm based on DDPG

↭ Numerical experiments
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Finite-Agent Model: Dynamics

↭ Game between m groups of many agents; each group: “coalition”
↭ In other words: m central players
↭ Ni denote the number of individual agents in coalition i

↭ !(Si) and !(Ai) be the sets of probability distributions on Si and Ai

↭ Agent j in coalition i has a state xij
t at time t

↭ The state of coalition i is characterized by the empirical distribution

µi,N̄
t = 1

Ni

Ni∑

j=1

ω
xij

t
↑ !(Si)

↭ The state of the whole population is characterized by the joint empirical
distribution: µN̄

t = (µ1,N̄
t , . . . , µm,N̄

t )
↭ The state of every agent j ↑ [Ni] in coalition i evolves according to a transition

kernel pi : Si ↓ Ai ↓
∏m

i→=1 !(Si→ ) ↔ !(Si)
↭ If the agent takes action aij

t and the distribution is µN̄
t , then:

xij
t+1 ↗ pi(·|xij

t , aij
t , µN̄

t )

and the agent obtains a reward rij
t = ri(xij

t , aij
t , µN̄

t )
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Finite-Agent Model: Rewards

↭ All the agents in coalition i independently pick their actions according to a
common policy εi : Si ↓ !(S1) ↓ · · · ↓ !(Sm) ↔ !(Ai), i.e., aij

t for all j ↑ [Ni]
are i.i.d. with distribution εi(·|xij

t , µN̄
t )

↭ We denote by ”i the set of such policies
↭ The social reward for the central player of population i is defined as:

J i,N̄ (ε1, . . . , εm) = 1
Ni

Ni∑

j=1

E

[
∑

t→0

ϑtrij
t

]
,

where ϑ ↑ [0, 1) is a discount factor and rij
t = ri

t(xij
t , aij

t , µN̄
t )

Definition

A policy profile (ε1
↑, . . . , εm

↑ ) ↑ ”1 ↓ · · · ↓ ”m is a Nash equilibrium for the above
finite-population game if: for all i ↑ [m], for all εi ↑ ”i,

J i,N̄ (εi; ε↓i
↑ ) ↘ J i,N̄ (εi

↑; ε↓i
↑ ),

where ε↓i
↑ denotes the vector of policies for central players in other coalitions except i.
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MFTG: Mean Field

We let Ni ↔ +≃

↭ State of coalition i: µi,N̄
t ↔ µi

t ↑ !(Si) for each i ↑ [m]

↭ State of the whole population: µN̄
t ↔ µt = (µ1

t , . . . , µm
t ) ↑ !(S1) ↓ · · · ↓ !(Sm)

↭ We will refer to the limiting distributions as the mean-field distributions

↭ More rigorously: Propagation of chaos

↭ We expect all the agents’ states to evolve independently, interacting only through
the mean-field distributions

↭ A representative agent in mean-field coalition i has a state xi
t ↑ Si which evolves

according to: xi
t+1 ↗ pi(·|xi

t, ai
t, µt), ai

t ↗ εi(·|xi
t, µt), where εi ↑ ”i is the policy

for coalition i

↭ We consider that this policy is chosen by a central player and then applied by
all the infinitesimal agents in coalition i.
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MFTG: Rewards

↭ The total reward for coalition i is: J i(ε1, . . . , εm) = E
[ ∑

t→0 ϑtri(xi
t, ai

t, µt)
]

↭ Goal: find a Nash equilibrium between the m central players.

Definition

A policy profile (ε1
↑, . . . , εm

↑ ) ↑ ”1 ↓ · · · ↓ ”m is a Nash equilibrium for the above
MFTG if: for all i ↑ [m], for all εi ↑ ”i, J i(εi; ε↓i

↑ ) ↘ J i(εi
↑; ε↓i

↑ ), where ε↓i
↑ denotes

the vector of policies for players in other coalitions except i.

N-player game

Approximate
Nash equilibrium 

Mean-field 
type game
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Approximate Equilibrium

Assumption

(a) For each i ↑ [m], the reward function ri(x, a, µ) is bounded by a constant Cr > 0
and Lipschitz w.r.t. µ with constant Lr.

(b) The transition probability p(x↔|x, a, µ) is Lp-Lipschitz continuous in µ

(c) The policies ε(a|x, µ) satisfy the following Lipschitz bound:

⇐ε(·|x, µ) ⇒ ε(·|x, µ̃)⇐1 ↘ Lωd(µ, µ̃) for every x ↑ Si
, and µ, µ̃ ↑ !(Si).

Theorem (Approximate Nash equilibrium)

Let (ε1
↑, . . . , εm

↑ ) ↑ ”1 ↓ · · · ↓ ”m
be a Nash equilibrium for the MFTG. When the

discount factor ϑ satisfies ϑ(1 + Lω + Lp) < 1, then

max
ω̃i

J i,N̄ (ε̃i; ε↓i
↑ ) ↘ J i,N̄ (εi

↑; ε↓i
↑ ) + ϖ(N),

for all i ↑ [m], with ϖ(N) = C maxi↗[m]

{
|Si|

√
|Ai|/

⇑
Ni

}
, where C is a constant.

↭ It justifies solving MFTGs because they provide an approximate solution for
finite-agent games.

↭ Provides a rate of convergence, not just asymptotic convergence
11 / 31
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Reformulation with MFMDPs: Notations

↭ The expected one-step reward can be expressed as

r̄i(µt, ε̄i
t) =

∑

x↗Si

µi
t(x)

∑

a↗Ai

ε̄i
t(a|x)ri(x, a, µt), ε̄i

t = εi
t(·|·, µt)

↭ S̄ =→m

i=1 S̄i is the (mean-field) state space, where S̄i = !(Si) is the
(mean-field) state space of population i. The (mean-field) state is s̄t = µt ↑ S̄

↭ Āi = !(Ai)|Si| is the (mean-field) action space
↭ r̄i : S̄ ↓ Āi ↔ R is as defined above
↭ F̄ = p̄ : S̄ ↓ Ā1 ↓ · · · ↓ Ām ↔ S̄ is defined such that: p̄(s̄t, ā1

t , . . . , ām
t ) = s̄t+1

where, if s̄t = (µ1
t , . . . , µm

t ) and āi
t = εi(·|·, µi

t), then s̄t+1 = (µ1
t+1, . . . , µm

t+1)
↭ The transitions of the mean-field state depends on all the central players’

(mean-field) actions
↭ The i-th central player first chooses (mean-field) policy ε̄i : S̄ ↔ Āi

↭ When applied on µt, ε̄i(µt) returns a policy for the individual agent, i.e.,
ε̄i(µt) : Si ⇓ xi

t ⇔↔ ε̄i(µt, xi
t) = εi(·|xi

t, µt) ↑ !(Ai).
↭ This approach allows us to view the problem posed to the i-th central player as a

Mean Field MDP (MFMDP)
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t = εi(·|·, µi

t), then s̄t+1 = (µ1
t+1, . . . , µm

t+1)
↭ The transitions of the mean-field state depends on all the central players’

(mean-field) actions
↭ The i-th central player first chooses (mean-field) policy ε̄i : S̄ ↔ Āi
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Reformulation with MFMDPs

Given policy profile ω̄ = (ε̄1, . . . , ε̄m), total reward of central player of coalition i:

v̄i
ω̄(s̄) = v̄i(s̄, ω̄) := Eω̄

[ ↘∑

t=0

ϑtr̄i(s̄t, āi
t)|s̄0 = s̄

]

where s̄t+1 ↗ p̄(·|s̄t, ā1
t , . . . , ām

t ), āj
t ↗ ε̄i(·|s̄t), j = 1, . . . , m, t ↖ 0.

Definition (Nash equilibrium for MFTG rephrased)

An MFTG Nash equilibrium ω̄↑ = (ε̄1
↑, . . . , ε̄m

↑ ) is such that for all i = 1, . . . , m:
v̄i(s̄, ω̄↑) ↖ v̄i(s̄, (ε̄i, ω̄↓i

↑ )), ↙s̄ ↑ S̄, ↙ε̄i ↑ ”̄i.

Let ā = (ā1, . . . , ām), ω̄↓i(dā↓i|s̄) =
∏

j ≃=i
ε̄j(dāj |s̄), ā↓i ↑ Ā↓i =

∏
j ≃=i

Āj .

Q-function for central player i: Q̄i
ω̄(s̄, ā) = Eω̄

[∑↘
t=0ϑtr̄i(s̄t, āi)|s̄0 = s̄, ā0 = ā

]
.

Definition

An MDP for a central player i against fixed policies ω̄↓i of other players is a tuple
(S̄, Āi, p̄ω̄↑i , r̄ω̄↑i , ϑ) where

p̄ω̄↑i (s̄↔|s̄, āi) =
∫

Ā↑i

p̄(s̄↔|s̄, ā)ω̄↓i(dā↓i|s̄), r̄ω̄↑i (s̄, āi) = r̄i(s̄, āi).
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Intuition

↭ Nash Q-learning for finite-player, finite-space games [Hu and Wellman, 2003]

↭ Depends on the policies of all the players

↭ Infinite horizon → the equilibrium depend on infinite trajectories

↭ Recall: Q̄i
ω̄(s̄, ā)

↭ If we had DPP for Q̄i, we could use the MF Q-learning of [Carmona et al., 2023]

↭ But no DPP for Q̄i, unless we have the equilibrium policies of others

↭ Introduce an auxiliary Q-function (NashQ function) based on equilibrium policies

↭ Reduce the infinite-horizon game to a sequence on one-stage games
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↭ If we had DPP for Q̄i, we could use the MF Q-learning of [Carmona et al., 2023]

↭ But no DPP for Q̄i, unless we have the equilibrium policies of others

↭ Introduce an auxiliary Q-function (NashQ function) based on equilibrium policies

↭ Reduce the infinite-horizon game to a sequence on one-stage games

14 / 31



Stage Game

Definition (Stage game and stage Nash equilibrium)

Consider as given a (mean-field) state s̄ ↑ S̄ and a policy profile ω̄ = (ε̄1, . . . , ε̄m).
The (mean-field) stage game induced by s̄ and ω̄ is a static game in which player i
takes an action āi ↑ Āi, i = 1, . . . , m and gets the reward

Q̄i
ω̄(s̄, ā1, . . . , ām).

Player i is allowed to use a mixed strategy ϱi ↑ !(Āi).

A Nash equilibrium for this stage game is a strategy profile ε↑ = (ϱ1
↑, . . . , ϱm

↑ ) such
that, for all ϱi ↑ !(Āi),

ϱ1
↑ · · · ϱm

↑ Q̄i
ω̄(s̄) ↖ ϱ1

↑ · · · ϱi↓1
↑ ϱiϱi+1

↑ · · · ϱm
↑ Q̄i

ω̄(s̄)

where we define

ϱ1 · · · ϱmQ̄i
ω̄(s̄) := r̄i(s̄, ϱi) + ϑ

∫

S̄

∫

Ā

v̄i(s̄↔, ω̄)p̄(ds̄↔|s̄, ā)ε(dā|s̄),

with Ā = Ā1 ↓ · · · ↓ Ām, ε(dā|s̄) =
∏m

i=1 ϱi(dāi|s̄), and r̄i(s̄, ϱi) := Eāi⇐εi r̄i(s̄, āi).
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Stage Game

Definition (NashQ function)

Given a Nash equilibrium (ϱ1
↑, . . . , ϱm

↑ ), the NashQ function of player i is defined as:

NashQ̄i
ω̄(s̄) := ϱ1

↑ · · · ϱm
↑ Q̄i

ω̄(s̄).

Proposition (Link between MFTG equilibrium and stage-game equilibrium)

The following statements are equivalent:

(i) ω̄↑ = (ε̄1
↑, . . . , ε̄m

↑ ) is a Nash equilibrium for the MFTG with equilibrium payoff

(v̄1
ω̄↓ , . . . , v̄m

ω̄↓ );
(ii) For every s̄ ↑ S̄, (ε̄1

↑(s̄), . . . , ε̄m
↑ (s̄)) is a Nash equilibrium in the stage game

induced by state s̄ and policy profile ω̄↑.

↭ Basis for RL algorithm: Nash Q-learning
↭ Requires solving stage-game
↭ We are going to discretize the simplexes
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Simplex Discretization

↭ S̄i = !(Si) and !(Ai) are (finite-dimensional) simplexes; we endow them with
the distances dS̄(s̄, s̄↔) =

∑
i↗[m] d(s̄i, s̄↔i) =

∑
i↗[m]

∑
x↗Si |µi(x) ⇒ µ↔i(x)|, and

dAi (āi(s̄), ā↔i(s̄)) =
∑

x,a
|εi(a|x, s̄) ⇒ ε↔i(a|x, s̄)|, where s̄i = µi,

āi(s̄) = εi(·|·, s̄).
↭ In Āi = {S̄ ↔ !(Ai)}, we take dĀi (āi, ā↔i) = sups̄↗S̄ dAi (āi(s̄), ā↔i(s̄)).
↭ Quantization:

↭ For i = 1, . . . , m, let Ši ∝ S̄i and !̌(Ai) ∝ !(Ai) be finite approximations
of S̄i and !(Ai).

↭ Mean-field finite spaces Š = ”m
i=1Ši ∝ S̄ and Ǎi = {ǎi : Š ↔ !̌(Ai)}.

↭ Let ςS = maxs̄↗S̄ minš↗Š dS̄(s̄, š) and
ςA = maxi maxāi↗Āi minǎi↗Ǎi dĀi (āi, ǎi), which characterize the fineness
of the discretization.

↭ The policy space of each player i is ”̌i = {ε̌i : Š ↔ !(Ǎi)}.
↭ Projection operator ProjŠ : S̄ ↔ Š, which maps s̄ to the closest point in Š.
↭ Transitions: Given a state št and a joint action (ǎ1

t , . . . , ǎm
t ), we generate

s̄t+1 = F̄ (št, ǎ1
t , . . . ǎm

t ). Then, we project s̄t+1 back to Š and denote the
projected state by št+1 = ProjŠ(s̄t+1).
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Theoretical Results
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Mean Field Nash Q-Learning
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Convergence

Recall:

Q̌i
t+1(š, ǎ1, . . . , ǎm) = (1 ⇒ φt)Q̌i

t(š, ǎ1, . . . , ǎm) + φt(r̄i
t + ↼NashQ̌i

t(š↔)),

where
NashQ̌i

t(š↔) = ε̌i,1
↑ · · · ε̌i,m

↑ Q̌i
t(š↔),

with ε̌i,j
↑ obtained by solving the one-stage game with rewards (Q̌1

t (š↔), . . . , Q̌m
t (š↔)).

Theorem (NashQ-learning convergence)

Under suitable assumptions (see [Hu and Wellman, 2003, Yang et al., 2018]),

Q̌t = (Q̌1
t , . . . , Q̌m

t ) converges to the Nash equilibrium Q-functions

Q̌ω̌↓ = (Q̌1
ω̌↓ , . . . , Q̌m

ω̌↓ ).

Then: focus on the difference between the approximated Nash Q-function,
Q̌i

t(ProjŠ(s̄), ProjǍ1 (ā1), . . . , ProjǍm (ām)) and the true Nash Q-function,
Q̄i

ω̄↓ (s̄, ā1 . . . ām), in the infinite space S̄ ↓ Āi ↓ · · · ↓ Ām
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Approximation Analysis

Assumption

(a) For each i, r̄i
is bounded and Lipschitz continuous w.r.t. (s̄t, āi

t) with constant

Lr̄i . F̄ is Lipschitz continuous w.r.t. (s̄, ā1, . . . , ām) with constant LF̄ in

expectation.

(b) v̄i
ω̄ is Lipschitz continuous w.r.t. s̄ with constant Lv̄ω̄ .

Notation: Proj(s̄, ā1 . . . ām) = (ProjŠ(s̄), ProjǍ1 (ā1), . . . , ProjǍm (ām)).

Theorem (Discrete problem analysis)

Let ς > 0. Suppose there is a unique pure policy ω̄p
↑ for the MFTG for each i and

s̄ ↑ S̄, the function vi
ω̄p

↓
(s̄) is a global optimal point for the stage game Q̄i

ω̄p
↓
(s̄). Then, if

t is large enough, for each i, s̄ ↑ S̄, i = 1, 2, · · · , we have

|Q̌i
t(Proj(s̄, ā1 . . . ām)) ⇒ Q̄i

ω̄p
↓
(s̄, ā1 . . . ām)| ↘ ς↔,

where

ς↔ = ς(t) + C1ςA + C2ςS ,

with ς(t) ↔ 0 as t ↔ +≃, ςS and ςA defined above, respectively,

C1 = 1
1↓ϑ (Lr̄i + ϑLv̄i

ω̄↓
LF̄ m) and C2 = ϑ

1↓ϑ Lv̄i
ω̄↓

+ Lr̄i + ϑLv̄i
ω̄↓

LF̄ .
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Nash Q-Learning

Pros and cons:

↭ Convergence proof under suitable assumptions

↭ But requires solving a stage-game at each iteration

↭ Easy for games with finite and small spaces

↭ Hard for games with large or even continuous spaces

↭ Quantization is not scalable

22 / 31
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Deep RL

Another idea:

↭ Do not discretize the simplexes

↭ Keep mean field state space as a continuous space

↭ Use deep RL to learn a policy as a NN

↭ Train one NN per central player (coalition)

↭ Evaluate convergence using exploitability

↭ For now, no proof of convergence

23 / 31



MFTG DDPG
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Experimental Setup

↭ Metrics:

↭ Testing rewards of each central player
↭ Exploitability

↭ Training and testing sets:

↭ Training set: randomly generated tuples of distributions
↭ Testing set: a finite number of tuples of distributions that are not in the

training set

↭ Baseline:

↭ No baseline for our problems
↭ Independent Learning-Mean Field Type Game (IL-MFTG): ablation study

(hide the distribution of the other population)

↭ Games: 5 examples in the paper

↭ Improvement: Average exploitability improvement of at least 30% in each game
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Exploitability

Definition

The exploitability of a policy profile (ε1, . . . , εm) ↑ ”1 ↓ · · · ↓ ”m is

E(ε1, . . . , εm) =
∑m

i=1 Ei(ε1, . . . , εm),

where the i-th central player’s exploitability is:

Ei(ε1, . . . , εm) = max
ω̃i↗!i

J i(ε̃i; ε↓i) ⇒ J i(εi; ε↓i).

↭ Ei(ε1, . . . , εm) = how much player i can be better off by deviating from εi

↭ E(ε1, . . . , εm) = 0 iff (ε1, . . . , εm) is a Nash equilibrium for the MFTG
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Example 1: 1D Population Matching Grid Game

↭ There are m = 2 populations
↭ Agent’s state space: 3-state 1D grid world
↭ Actions: moving left, staying, and moving right, with individual noise perturbing

the movements.
↭ Rewards: encourage Coalition 1 to stay where it is initialized but also to consider

avoiding Coalition 2, and encourage Coalition 2 to match Coalition 1.

Ex. 1: Left and middle: averaged testing rewards and exploitabilities resp. (mean ± standard
deviation). Right: one realization of population evolution at t = 0 and 4 for one testing distribution.
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Example 2: Four-room with crowd aversion
↭ There are m = 2 populations
↭ Agent’s state space: 2D grid world composed of 4 connected rooms of size 5 ↓ 5
↭ The policies’ inputs are thus of dimension 2 ↓ 4 ↓ 5 ↓ 5 = 200
↭ Rewards: encourage the two populations to spread while avoiding each other;

Coalition 2 has a penalty for going to rooms other than the one she started in.

Ex. 2: Left, top and bottom: averaged testing rewards and exploitabilities resp. (mean ± stddev).
Right, two top rows: distribution evolution of the two populations with our method. Right two
bottom rows: distribution evolution with the baseline. Color bars indicate density values.
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Example 3: Predator-prey 2D with 4 groups

↭ There are m = 4 populations.
↭ Player’s state space is a 5 ↓ 5-state 2D grid world with walls on the boundaries
↭ Rewards:Coalition 1 is a predator of Coalition 2, Coalition 2 avoids Coalition 1

and chases Coalition 3, which avoids Coalition 2 while chasing Coalition 4.
Coalition 4 tries to avoid Coalition 3. There is also a cost for moving.

                  

Ex. 3: Left: averaged exploitabilities (mean ± stddev). Right: populations evolution, one coalition
per row and one time per column: t = 0, 5, 10, 15, 20. Color bars indicate density values.
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Exploitability Results

We summarize the improvement brought by our method compared with the
corresponding baseline, in each example.
The quantities are:

↭ Baseline Exploitability: The baseline’s mean value (as described in the paper).
↭ Our Exploitability: Our method’s mean value (as described in the paper).
↭ Improvement: The percentage improvement is calculated as:

Improvement (percentage) = Baseline ⇒ Ours
Baseline

↓ 100.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Baseline Exploit. 2355.35 3.13 131.43 2.69 6.93
Our Exploit. 471.40 2.16 38.75 1.39 3.14

Improvement 79.98% 31.0% 70.52% 48.3% 54.69%

Comparison of baseline and our exploitability metrics across the 5 examples described in the
text, along with percentage improvement.
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Summary and Perspectives

Summary:

↭ Finite space MFTGs: Nash equilibrium between mean field coalitions

↭ Reformulation in terms of MFMDP

↭ Nash Q-learning after quantization of the simplexes

↭ Deep RL without discretization

Paper: https://arxiv.org/abs/2409.18152

Perspectives:

↭ Problem setting: more complex settings, information structure, . . .

↭ Numerical analysis: Proof of convergence for deep RL

↭ Numerical experiments: More complex examples and deep RL methods

↭ Continuous space (beyond LQ)

Thank you!
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